
In Di Sciullo, A. M. and R. Delmonte (Eds.) UG and External Systems. Amsterdam:
John Benjamins. 2004 (In press)

Computation with Probes and Goals:
A Parsing Perspective

Sandiway Fong
Departments of Linguistics and Computer Science

University of Arizona
Tucson AZ

USA
sandiway@email.arizona.edu

Abstract

This paper examines issues in parsing architecture for a left-to-right
implementation of the probe-goal Case agreement model, a theory in the
Minimalist Program (MP). Computation from a parsing perspective
imposes special constraints. For example, in left-to-right parsing, the
assembly of phrase structure must proceed through elementary tree
composition, rather than using using the generative operations MERGE and
MOVE directly. On-line processing also poses challenges for the
incremental computation of probe/goal relations. We describe an
implemented parser that computes these relations and assembles phrase
structure, whilst respecting the incremental and left-to-right nature
of parsing. The model employs two novel mechanisms, a Move and a
Probe box, to implement efficient parsing, without “lookback” or
unnecessary search of the derivational history.

1 Introduction

Recently, there has been a shift in the structure of linguistic theories of narrow syntax
from abstract systems of declarative rules and principles, e.g. [Chomsky, 1981], to
systems where design specifications call for efficient computation within the human
language faculty. In particular, recent work in the Minimalist Program, e.g. [Chomsky,
1998,1999], has highlighted the role of locally deterministic computation in the
construction of syntactic representation.
Instead of a system involving Spec-Head agreement, Chomsky re-analyzes the Case-
agreement system in terms of a system of probes, e.g. functional heads like T and v*, that
target and agree with goals, e.g. referential and expletive Ns, within their c-command
domain. Under this system, probe-goal agreement can be long-distance and may not
necessarily trigger movement, e.g. in the case of there-expletive constructions and Quirky
Case agreement in Icelandic.1 The implemented parser described in this paper represents
the first implementation of the probe-goal account. The logical separation of agreement

1 In this system, probe-goal agreement may trigger concomitant movement by the
principle of Maximize Matching Effects, [Chomsky, 1999].

and movement distinguishes this system from those based on the Minimalist Grammar
(MG) formalism [Stabler, 1997]. In the MG formalism, formal feature-checking always
precipitates movement.
Efficient assembly, i.e. locally deterministic computation, from a generative perspective
with respect to (bottom-up) MERGE does not guarantee that parsing with probes and goals
will also be similarly efficient. By locally deterministic computation, we mean that the
choice of operation to apply to properly continue the derivation is clear and apparent at
each step of the computation. In the case where it is not possible to decide between
actions, we have a choice point. A theory that efficiently assembles phrase structure
starting from a primitive lexical array may not have a correspondingly efficient procedure
for the left-to-right recovery of that phrase structure since the LA is not available prior to
parsing. A simpler example can be used to illustrate the point. There is a well-known,
efficient procedure for forming the product r of two prime numbers, p and q. On the other
hand, decomposing r into p and q requires a relatively computationally expensive
procedure, necessitating guesswork or search.
This paper describe a implemented system that handles a range of examples discussed in
[Chomsky, 1998,1999]. In particular, it explores the computational and empirical
properties of the probe-goal system from a left-to-right, incremental parsing perspective.
Instead of MERGE and MOVE as the primitive combinatory operations for the assembly of
phrase structure, we describe a system driven by elementary tree composition with
respect to a range of heads in the extended verb projection (v*, V, c and T). Elementary
tree composition is an operation that is a basic component of Tree-Adjoining Grammars
(TAG), [Joshi & Schabes, 1997], and other linguistic theories, e.g. [Di Sciullo, 2002].
The system described here is on-line in the sense that once an input element has fulfilled
its function, it is discarded, i.e. no longer referenced. To minimize search, there is not
only no lookahead, but there can also be no lookback in the sense of being able to
examine or search the derivational history. Instead, we make use of two novel devices
with well-defined properties: a Move Box that encodes the residual properties of CHAINs
and theta theory, and a single or current Probe Box to encode structural Case assignment
and to approximate the notion of (strong) Phase boundaries. In particular, the restriction
to a single Probe Box means that probes cannot “see” past another probe; thereby
emulating the Phase Impenetrability Condition (PIC). Limiting the Move Box to operate
as a stack will allow nesting but not overlapping movement. A consequence of this is that
extraction through the edge of a strong Phase is not longer possible. Examples of parses
will be used to illustrate the empirical properties of these computational elements. The
system is also incremental in the sense that a partial parse is available at all stages of
processing. In particular, it extends the derivation to the right in a manner reminiscent of
[Phillips, 1995].2

The basic questions explored in this paper are as follows: (1) what are the situations
where left-to-right computation pose problems for deterministic computation, (2) what
computational elements are necessary to implement the on-line assembly of phrase

2 The term “reminiscent” is used here because [Phillips, 1995] pre-dates the probe-goal
Case agreement framework discussed here.

structure in an efficient manner, and (3) what are the consequences of eliminating
computational choice points introduced by the extra machinery.

2 The Lexicon

We begin with the definition of a lexicon: the heart of the implemented system.
Following directly from [Chomsky, 1998, 1999], we assume the parser operates with a
system of functional and lexical categories with properties and features, interpretable and
uninterpretable, of the form shown in Figure 1 below. The property of selection and
uninterpretable feature matching will drive the parsing process. In the course of
computation, unintepretable features belonging to analyzed constituents will be
eliminated through probe-goal agreement in a manner to be described in detail in section
6. A (valid) parse is a phrase structure that obeys the selectional properties of the
individual lexical items, covers the entire input, and has all uninterpretable features
properly valued.
There are five basic types of heads listed in the table:

(1) C
Two types of complementizer are represented here; declarative c and c(wh) for Wh-
questions.
(2) T
Two types of tense; T for tensed clauses, and φ-incomplete or defective T,
represented by

€

Tφ , for infinitivals.

(3) v
Small v comes in three basic flavors: transitive v*, for verbs like hit, unergative v#,
for verbs like swim and unaccusative v, for verbs like arrive. Past participles are also
analyzed as instances of v.
(4) V
In conjunction with the variety of small vs, two basic types of V with respect to
complement-taking are listed. Transitive and unaccusative V select for a complement,
but not unergative V.
(5) N
We restrict our attention to simple nominals, excluding from discussion complex
nominals that select for complements.

Uninterpretable
Features

Lexical Item
(LI)

Properties

φ-features Other

Interpretable
Features

v*
(transitive)

select(V)
spec(select(N))
value(case(acc))

per(P)
num(N)
gen(G)

(epp)

v
(unaccusative)

select(V)

v#

(unergative)
select(V)
spect(select(N))

PRT
(passive
participle)

select(V) per(P)
num(N)

case(_)

V
(transitive)
(unaccusative)

select(N)

V
(unergative)
V
(raising)

select(

€

Tφ)

T select(v)
value(case(nom))

per(P)
num(N)
gen(G)

epp

€

Tφ select(v) per(P) epp

c select(T)

C
(wh)

select(T) epp wh

N
(referential)

case(_) per(P)
num(N)
gen(G)

N
(wh)

wh case(_) per(P)
num(N)
gen(G)

N
(expletive)

per(P)

Figure 1: A Sample Lexicon

The heads c(wh), T,

€

Tφ , v* and v are probes with uninterpretable features, and
participate in the fundamental Agree operation, to be discussed in section 6. The
elements, properties and features, of this table are rendered in pseudo-PROLOG notation
and are grouped as follows:

(6) Select:
For example, select(V) is a property of v*; that is, v* selects for a (complement)
phrase headed by V. v* also has the property spec(select(N)); this notation is used to
indicate that v* pre-selects for a phrase headed by N in its specifier position.3

(7) φ-Features:
The structures per(_), num(_) and gen(_) are used to represent the φ-features person,
number and gender, respectively, with the anonymous logic variable (_) representing
the uninstantiated slot for the value of each feature. In the case of the probe v*, these
features are uninterpretable (and come unvalued). For nominals, these features are
interpretable (and come valued). Probe-goal agreement will value the uninterpretable
features, i.e. fill the slots indicated by the anonymous logic variable.
(8) Value:
For example, T has property value(case(nom)); that is, T as a probe values
nominative Case for an appropriate goal. Similarly, in this system, (transitive) v*
values accusative Case.
Defective T, indicated by

€

Tφ , differs from T in that it has an incomplete set of φ-
features (just person per(_)), and cannot value Case (no value(case(_)) property).
Selectionally, they are the same, i.e. they both select for phrases headed by v.
(9) Case:
Nominals will have the uninterpretable feature case(_) (with an open slot for a value).
Through the Agree relation, probes with the property value(case(V)), where V is nom
or acc will instantiate an appropriate slot in a nominal goal, thus eliminating the
uninterpretable feature for the goal.
(10) EPP:
The EPP is an uninterpretable feature with a special property. Elements that possess
this feature (epp) may trigger MOVE, defined in (13). epp licenses a specifier position
as the landing site for movement. If the MOVE operation succeeds, unintepretable epp
is eliminated. Unique among the features introduced here, the EPP feature (or
property) can also be satisfied by MERGE. For example, T has feature EPP. It can be
eliminated either by raising, say, the internal subject of v* to specifier-T or by direct
merge of an expletive like there as in there is a man in the room.

3 As will be explained below, select(V) plays only a role in elementary tree composition.
In particular, it is not a participant in the central operations Agree or Move.

(11) Q and wh:
We assume that the Wh-word fronting system works in a parallel fashion to the Case
agreement system. Q, or c(wh) here, has interpretable feature wh, which cancels with
uninterpretable feature wh for Wh-nominals under Agree.

The lexical definitions given above, along with an appropriate encoding of Agree and
Move, suffice to determine basic phrase structure. For example, the parse generated by
the system for the simple sentence John saw Mary is shown in Figure 2 below. In this
case, the displayed features show that John is subject to MOVE (to be elaborated on in
section 4), receiving nominative Case from T. In return, T’s φ-features are valued. There
is a similar exchange in the case of v* and Mary with respect to accusative Case.

Figure 2: Example parser for John saw Mary

3 Elementary Trees

The basic operations MOVE and MERGE, defined in (12) and (13) respectively, are
fundamentally bottom-up operations for the assembly of phrase structure. An online, left-
to-right parser cannot make use of these operations directly. In this section, we describe
an alternative mechanism based on the composition of (possibly underspecified)
elementary trees.

(12) Merge(α,β) = {α,β} = γ, LB(γ) = LB(α) or LB(β)

α, β and γ are syntactic objects. Syntactic objects are either primitive lexical items
(LI) or the products of Merge. LB is the label function.

Agree (defined later in section 6) in the presence of EPP triggers Move.
(13) Move(p,g) holds if:

a. Agree(p,g) holds, and
b. p has an EPP-feature.
Then:
c. Identify some PP(g) (pied-piping), and
d. Merge PP(g) to some specifier-p leaving a trace, and
e. EPP-p is deleted

Probe p and goal g are syntactic objects. g is in the c-command domain of p.

Elementary trees form the base component of Tree-Adjoining Grammars (TAG) [Joshi &
Schabes, 1997]. We will assume parsing proceeds (in part) through composition of
elementary trees that contain open positions. The range of elementary trees is determined
by lexical properties. Given the lexicon of Figure 1, we define the 9 ground elementary
trees shown in Figure 3 below. By ground, we mean that all the sub-components of the
tree are defined or specified. (We return to discuss examples of non-ground or
underspecified trees shortly.)

c cwh T and

€

Tφ Nominal

(a) (b) (c) (d)
v*/v/v# V

(unergative)
V

(transitive/
unaccusative)

(e) (f) (g) (h) (i)

Figure 3: Elementary Trees
Elementary trees are basically projections of functional and lexical heads with open
complement and specifier positions pre-determined by lexical entries. For example, the
lexicon in Figure 1 defines three versions of v. Both transitive v* and unergative v# have
selectional properties select(V) and spec(select(N)) represented by elementary trees with
two open position, as shown in (e) and (g) in Figure 3. Unaccusative v has selectional

property select(V) only, so it has just one open position (for its complement). In the case
of T and

€

Tφ , the epp feature translates into an open specifier position, as shown in (c).

With these basic building blocks, it is a straightforward matter to “paste together” or
perform elementary tree composition to form a parse tree for a complete sentence such as
John saw Mary in Figure 2, filling in the open positions on the edge of the tree from the
input in a linear, left-to-right fashion. The basic procedure is given in (14) and the
sequence of steps to assemble Figure 2 beginning with the complementizer (c) is given in
Figure 4.4

Figure 4: Assembly of John saw Mary

(14) Parse:
a. Given a category c, pick an elementary tree headed by c.
b. From the input:

 i. Fill in the specifier (if one exists)
 ii. Fill in the head
 iii. Fill in the complement by recursively calling parse with

€

′ c where c
has lexical property select(

€

′ c)

4 In Figure 4, the underscore character (_) is used to denote (unfilled) open positions.

Less straightforward is the matter of picking out the right elementary tree each time
around the parse procedure. In Chomsky’s generative model, assembly begins with a one-
time selection from the lexicon that produces a lexical array (LA). In other words, the
correct components for assembly are laid out in a separate step ahead of assembly time.
In the case of on-line parsing, no pre-determined LA is available. Lexical items
associated with the input can only be discovered in the course of assembly. Not knowing
the LA forces the introduction of a choice point at elementary tree selection time, e.g. the
selection of v* (over v and v#) in (v) and transitive/unaccusative V (over unergative V) in
(vii) in Figure 4.
We can limit choice point formation in some cases by underspecifying or keeping non-
ground parts of the elementary tree. More abstractly, an elementary tree can be linearly
underspecified with respect to whether it has a complement, e.g. V, and its lexical
properties, e.g. T/

€

Tφ . An abstract elementary tree can be substituted in these cases and
the final shape of the elementary tree determined when the head is inserted (modulo
lexical polysemy). In cases where underspecification of the specifier is required, as with
v* versus v#/v, this strategy will not result in choice point elimination since the (potential)
specifier position must be filled before the head in strict left-to-right order.
Summarizing with respect to Figure 3, limited elementary tree underspecification in the
implementation permits cases (e) and (g) to be conflated; also cases (h) and (i). With
respect to the sequence of steps in Figure 4, underspecification allows (local)
determinism to be maintained for steps (ii), selection of T, and (vii), selection of V; but
not for steps (i), selection of c, and (v), selection of v, where the option of the specifier
position cannot be resolved without the benefit of lookahead.
The fact that v and V are largely decoupled here, in the sense that different variants of v
may co-occur with a given V, permits the system to flexibly handle examples of
causative/unaccusative alternations such as (15a-b) at the cost of introducing non-
determinism.5

(15) a. [T The sun [T T [v t(sun) [v v* [V melted the ice]]]]]
b. [T The ice [T T [v v [V melted t(ice)]]]]
c. *[T The sun [T T [v v [V melted the ice]]]]

Note that parser cannot detect that (15c), cf. (15b), is illicit until it reaches the verb object
position. That is, local determinism in the choice of v cannot be maintained.6

5 Lexico-semantic constraints external to the system described here will be needed to rule
out cases like *John arrived Mary.
6 In Chomsky’s bottom-up generative framework, (15c) cannot be assembled.
Agree(T,ice) will force the raising of the object according to the principle of maximizing
matching effects, i.e. Agree will trigger MOVE if possible. For the parsing model, as will
be explained later, assembly will fail at the verb object position due to constraint (16), i.e.
the preference for the Move Box over the input.

4 The Move Box

The Move Box is used by the parser to encode phrasal movement.7 The Move Box
represents a “holding cell” or a piece of short-term memory that is used to hold
constituents that undergo MOVE. Open positions in the parse tree may be filled by the
contents of the Move Box. This component of the parser is reminiscent of the ad hoc
HOLD register used for filler-gap dependencies in Augmented Transition Networks (ATN)
[Woods, 1970]. However, the Move Box defined here is simply an embodiment of, and
strictly respects, theta theory. In other words, box manipulation is strictly constrained by
a small set of operations that encode theta theory as it applies to traditional Chains,
encoding the history or derivation of movement.
Initially, let us assume the simplest case of a single Move Box. The introduction of this
data structure immediately presents a problem for deterministic computation. We have
introduced a choice point; namely, the option of filling an open position from the Move
Box instead of the input. Let us eliminate this choice point immediately with the
following preference rule:

(16) Move Box Preference Rule
When filling open positions) always prefer the Move Box over the input.

In particular, (16) asserts that, provided the Move Box is non-empty, we must always
select from the Move Box, irrespectively of the contents of the input. There is no choice
involved. In other words, (16) removes the choice point in step (b) of the (revised) parse
procedure, as shown below in (17). (We will return to consider the empirical
consequences of this strategy later.)

(17) Parse:
a. Given a category c, pick an elementary tree headed by c.
b. From the Move Box or input:

 i. Fill in the specifier (if one exists)
 ii. Fill in the head
 iii. Fill in the complement by recursively calling parse with

€

′ c where c
has lexical property select(

€

′ c)
We now turn to the operating conditions of the Move Box, i.e. the conditions under
which the box may be initialized, filled and emptied. At the start of the parse, the Move
Box contains nothing:

(18) Move Box: Initial Contents
Empty.

7 We do not consider the computation of affixes and head movement in this paper. The
computation of these elements may fall outside the purview of narrow syntax.

Hence, initially, elementary tree open positions are filled from the input. However,
whenever an open position is filled from the input, we will make a copy and place it in
the Move Box:

(19) Move Box: Fill Condition
When filling from input, copy to Move Box.

As mentioned earlier, the Move Box respects theta theory. In particular, once we arrive at
a selected position that needs to be filled, we have essentially determined the original
MERGE position of the moved phrase, and the parser’s (re-)construction of the “chain” of
movement is complete. As the contents of the Move Box are no longer required by
computation, it is deleted:

(20) Move Box: Empty Condition
At a selected position, empty it.

(In this model, the selected positions are the theta positions spec(select(N)) and select(N)
for v* and V in Figure 1, respectively.)
Note also that conditions (19) and (20) logically combine to fill and immediately empty
the Move Box in the case of in situ elements.
We are now in a position to illustrate the operation of the Move Box. Consider again the
sequence of operations shown in Figure 4 for the simple sentence John saw Mary. The
corresponding manipulations for the Move Box are documented in Figure 5 below.

Figure 5: Move Box computation for John saw Mary

Note that the Move Box must be empty at the start of step (ix) in Figure 5, given the
Move Box preference rule. However, it is also important that the lifespan of the box be
carefully controlled and not, for example, be emptied prematurely. Consider example
(21a) and the corresponding parse in (21b). Here, the Move Box containing prizes must
be available for successive cyclic movement.

(21) a. Several prizes are likely to be awarded
b. [c c [T several prizes [T [T past(-) [v [v be][A [A likely][T t(prizes) [T

€

Tφ [v

[v PRT][V award t(prizes)]]]]]]]]]
There is one further complication that needs to be addressed. To accommodate expletive
movement, i.e. the movement of an expletive from one non-selected position to another
(possibly iterated), we need to refine condition (20) as follows:

(22) Move Box: Empty Condition for Expletives
Fill from Move Box at a non-selected position: if box contains an
expletive, optionally empty it.

Note that we have introduced an (unavoidable) choice point in (22). Emptying is made an
option to accommodate the possibility of recursion, as illustrated in (23). With recursion,
it is not possible to locally determine whether a given non-selected position is the last or
original (MERGE) position of the expletive.

(23) a. There are prizes awarded8

b. There are likely t(there) to be prizes awarded
c. There are supposed t(there) to be likely t(there) to be prizes awarded

Making (22) deterministic by not emptying the Move Box in the case of an expletive will
also produce incorrect results. For example, in (23b), the Move Box must be emptied
otherwise the parser will not be able to pick up prizes from the input.
The Move Box preference rule (16) also has certain desirable consequences. Consider
again (15c), the case of (incorrectly) selecting unaccusative v over transitive v*, repeated
here as (24):

(24) *[T The sun [T T [v v [V melted the ice]]]]
(25) summarizes the state of the computation at the point where the parser is poised to
complete the verb object position. The parser has not encountered any selected positions,
so it must fill from the non-empty Move Box, thereby orphaning or stranding the contents
of the input (the ice). Hence, (24) is ungrammatical.

(25) a. [c c [T The sun [T [T past(+)] [v v [V melt _]]]]]
b. the ice (Input)
c. the sun (Move Box)

A Move Box preference also blocks illicit passivization of a indirect object, as in (26):
(26) *Mary was given a book to t(Mary)

8 For the examples in (23), Chomsky assumes an English-particular rule of
Thematization/Extraction (TH/EX) at PF will front prizes ahead of the verb award. This
rule is currently unimplemented in the parser described here.

Assuming a small clause-style analysis of the double object construction, e.g. along the
lines of [Pesetsky, 1995], the parser must select Mary from the Move Box (over a book)
to fill the specifier-P open position in (27).

(27) a. [c c [T Mary [T [T past(+)][v PRT [V [V give][P _ [P [P to] _]]]]]]]
b. a book (Input)
c. Mary (Move Box)

5 Limitations of the Move Box

The single Move Box system has some design limitations. In some cases, as will be
discussed in this section, it will become necessary to invent additional boxes. However,
for example, with two or more boxes, we will have to choose which one to fill from.
Hence, multiple boxes are to be avoided if possible, or at least constrained in a manner
that does not promote non-determinism in the system. Organizing boxes into a non-flat
data structure such as a stack, i.e. nesting, is an example of a strategy that does not
promote non-determinism. The access rules for this data structure are clear, i.e. we can
only pick or have access to the (current) top box. No choice is required.

5.1 Nesting

Consider the two cases of wh-object extraction in (28a-b):
(28) a. Who did Bill see?

b. Who was a book given to?
(28a-b) contain examples of nested movement, as shown in (29a-b), respectively. For
both cases, who occupies the Move Box when the parser reaches the specifier-T (or
subject) position. The subject, Bill in (28a) and a book in (28b), also needs to occupy the
Move Box, since it is also part of a (non-trivial) chain, originating in specifier-v and
specifier-P, respectively.

(29) a. Who did [T Bill [v t(Bill) [v v* [V see t(who)]]]]
b. Who was [T a book [T [T past(+)][v PRT [V give [P t(book) [P to t(who)
]]]]]]

In both cases, the problem can be solved by allowing Move Boxes to be nested by
recency, i.e. in stack fashion. The following three rules govern the creation and deletion
of multiple boxes:

(30) Move Box: Nesting
(When filling non-selected open positions) allow filling from the input
(creating a new Move Box).

(31) Move Box Preference Rule
Operations may only reference the most recently created Move Box

(32) Move Box: Deletion
When a Move Box is emptied, it is deleted.

For example, (30) allows Bill in (non-selected) specifier-T in (29a) to begin a new Move
Box. This second box is the new top-of-stack. By the second preference rule (31), all box
operations must now reference this box, thereby eliminating a potential choice point.
Proceeding normally, this second box is emptied when t(Bill) is inserted in
specifier-v (a selected position). At this point, the second box can be discarded, following
rule (32), as it has fulfilled its theta duties in the sense that the movement chain is now
complete, and the original Move Box containing who can be reactivated. Parsing
proceeds normally, and this box is subsequently emptied at the verb object position. A
similar sequence of actions apply in (29b), with the second box containing a book
emptied and eliminated at specifier-P.
Finally, note that the parser will still (correctly) reject (26). In state (27), the open
position is not a non-selected position, and thus a new box cannot be created.

5.2 Overlap

We distinguish nesting from overlap with respect to chains. In this paper, we consider all
cases of overlap to be undesirable, as it requires more powerful parsing machinery.
Consider example (28a) again, repeated below as (33a). In Chomsky’s model, heads such
as c and v* constitute (largely impenetrable) strong Phases. The Phase Impenetrability
Condition (PIC) limits the scope of probes for feature matching. For example, in order for
who to be visible to the wh-probe c(wh), it has to be first extracted to the Object Shift
position, an “escape hatch” at the edge of the phase. As can be seen in (33b), this results
in movement chain overlap that cannot be accommodated by the machinery described
earlier for nesting.

(33) a. Who did Bill see?
b. [c Who [c [c c(wh)] did [T Bill [v t(who) [v t(Bill) [v v* [V see t(who)
]]]]]]]

Both overlap and nesting require multiple boxes. However, in (33b), we require access to
two boxes, or the ability to choose between them, thereby compromising determinism.
Put another way, overlap requires more powerful machinery (than nesting) in the sense
that it introduces an extra choice point. For parsing, as will be described in the next
section, on-line, left-to-right processing implies that Agree between who and c(wh) can
be obtained without going beyond strong Phase boundaries. In particular, there is no need
for movement to the edge for such cases, and we will obtain much of the force of the
Phase model through the architectural limit of a single Probe Box, without having to
expand beyond the nesting mechanism.

6 Probes and Goals

In this section, we introduce the notion of a Probe Box. Agree is the central relation
computed by the parser. The operation that implements Agree will always involve the
participation of a current probe, stored in the Probe Box, with a freshly introduced
element of the input. In other words, Agree is performed as early as possible in an on-line
fashion.

6.1 Agree and Value

Formally, Agree is defined in (34) in terms of matching features (φ-features or wh)
between active probes and goals. Syntactic objects are active if they have one or more
(undeleted) uninterpretable features.

(34) Agree(p,g) if
a. Match(p,g) holds. Then:
b. Value(p,g) for matching features, and
c. Value(p,g) for property value(f)

Probe p and goal g are syntactic objects. f is a feature.

Following Chomsky’s definitions, if Match(p,g) holds, the goal g may value
uninterpretable features in the probe p, indicated by Value(g, p):

(35) Value(α,β) holds if:
a. (Unify) Unify matching φ-feature values of α and β.
b. (Assign) If α has property value(f), f for β receives its value from α.

α and β are syntactic objects or features of syntactic objects.

For example, as the parse in Figure 2 indicates, v*’s (unintepretable) φ-features are
valued by matching φ-features of Mary. Proceeding in the opposite direction, a
probe p may value uninterpretable features of a goal g if p has the property of valuing
some feature f. For example, T and v* in Figure 2 have property value(case(nom)) and
value(case(acc)), valuing the (uninterpretable) structural Case feature of John and Mary,
respectively. (Note that the φ-incomplete probe

€

Tφ does not have this property and thus
cannot value uninterpretable features.)
The model here deviates from Chomsky’s basic account in that logical unification is used
in (35a) in order to maintain the single Probe Box story in the context of φ-incomplete
probes, as will be explained below.

6.2 The Probe Box

For parsing, the probe p in (34) will always refer to the current contents of the Probe Box.
At the start of the computation, the Probe Box is empty:

(36) Probe Box: Initial Contents
Empty.

We modify the parse procedure to call Agree and update or maintain the contents of the
Probe Box in an on-line fashion, as shown in (37). The basic strategy is to run Agree on
items as soon as they are inserted into phrase structure. With this strategy, no new choice
points need be introduced.

(37) Parse:
a. Given a category c, pick an elementary tree headed by c.
b. From the Move Box or input:

 i. Fill in the specifier (if one exists)
 ii. Run Agree(p,s) if p and s are non-empty
 iii. Fill in the head h
 iv. Run Agree(p,h) for goal h or φ-incomplete h
 v. Copy h to Probe Box p if h is a probe
 vi. Fill in the complement by recursively calling parse with

€

′ c where c
has lexical property select(

€

′ c)

Assuming the current elementary tree contains a specifier s, step (37b-ii) runs
Agree(p,s) as soon as the specifier position is filled. Next, as the head of the elementary
tree is filled, if it is a probe, it is copied to the Probe Box by step (37b-v), possibly
overwriting a pre-existing probe. Only a single probe is permitted. Note step (37b-iv) also
stipulates that Agree is also run on heads that are φ-incomplete probes. (We return to
discuss this operation in the next section.)
We are now in a position to illustrate the operation of the Probe Box for a simple
sentence. Consider again the sequence of operations shown in Figure 4 for John saw
Mary. The corresponding manipulations for the Probe Box are documented in Figure 6
below.

Figure 6: Probe Box computation for John saw Mary

The Probe Box is filled by [T past(+)] in step (iv). In step (vi), Agree is carried out on
specifier-v John. The φ-features of John value the φ-features of the current probe T, and
T values the Case feature of John. The single Probe Box strategy implies that the new
probe v* displaces T as the current probe. In step (ix), Agree is carried out on
complement-V. The φ-features of Mary value the φ-features of v*, and v* values the Case
feature of Mary.
The single Probe Box model incorporates and preserves much of the property of Phases
with respect to locality. A probe cannot penetrate into the domain of a lower probe since
it will be displaced as soon as the parser encounters the second probe.

6.3 φ-Incomplete Probes

So far, the current probe has been determined by left-to-right parse order. Let us now turn
to situations of the kind considered by Chomsky involving intervening φ-incomplete
probes such as infinitival

€

Tφ and PRT, shown here in (38)-(40).

(38) a. We expect there to arrive a man
b. We T expect [T there

€

Tφ arrive a man]

(39) a. There are likely to be awarded several prizes
b. There T are likely [T t(there)

€

Tφ [v PRT [V award several prizes]]]

(40) a. There are expected to arrive a man
b. There T [v PRT [V expect [T t(there)

€

Tφ arrive a man]]]

There are two problems to be addressed in examples (38)-(40). (1) the presence of φ-
incomplete probes blocking matrix T from agreeing with the object of the embedded
clause, and (2) the valuation of the unintepretable features belonging to φ-incomplete
probes.
Matrix T must value the Case feature of the embedded object and its φ-features must be
valued by the embedded object. Under the single probe model, matrix T must not be
displaced by

€

Tφ or PRT, since the contents of the Probe Box must be preserved until the
parser reaches the embedded object position and can run Agree. This is encoded in (41):

(41) Probe Box: φ-Incomplete Probes
φ-incomplete probes may not occupy the Probe Box.

However, (41) by itself is insufficient since φ-incomplete probes also have
uninterpretable features that must be valued for the computation to succeed. With respect
to the lexicon defined earlier in Figure 1,

€

Tφ has a single uninterpretable φ-feature
person(_), and the participle PRT has uninterpretable features {person(_),number(_)}.
Assuming feature unification, the solution to this problem is given in parsing step (37b-
iv). When a head h that is also a φ-incomplete probe is analyzed, Agree(p,h) is applied.
For example (38), Agree(T,

€

Tφ) will unify the (still) unvalued features of T and

€

Tφ . In
particular, T-person(_) is unified with

€

Tφ -person(_). More precisely, the feature value
slots, denoted by “_”, are unified and will share values once instantiated. T stays in the
Probe Box and goes on to complete Agree(T,man). The unintepretable φ-features of T are
valued. Furthermore,

€

Tφ -person(_) is also valued by association from the earlier
unification. Similar considerations apply for

€

Tφ and PRT for (39) and (40). In the case of
PRT, in addition to its φ-features, it also has an uninterpretable Case feature, which is
valued by Agree(T,PRT). Hence, the single Probe Box can be maintained and no
additional choice points need be created.9

6.4 Probe Inactivation

In the account so far, the Probe Box is only superceded when a new (φ-complete) probe
comes along to fill the box. In particular, a probe may remain in the Probe Box even after
its uninterpretable φ-features have been valued. In other words, the Probe Box may hold
an inactive probe. In this section, we give evidence that this strategy is essentially correct.
Consider example (21a) again, repeated below as (42a). (b) encodes the state in

9 Actually, we also need to add that the parser runs Agree(c(wh),wh-N locally, i.e. when
the wh-N is first filled at specifier-c, to maintain the single Probe Box story for wh-
movement.

computation where the embedded specifier-T has just been filled with prizes from the
Move Box:

(42) a. Several prizes are likely to be awarded
b. [c c [T several prizes [T [T past(-) [v [v be][A [A likely][T t(prizes) [T

€

Tφ _
]]]]]]
c. prizes (Move Box)
d. T (Probe Box)

In accordance with applying Agree as soon as possible, Agree(T,prizes) at step (42b) will
value T’s φ-features (and the Case feature of prizes). Without outstanding uninterpretable
features, T is rendered inactive. However, as (43) indicates, it is necessary to allow T to
remain in the Probe Box as there are still φ-incomplete probes, namely

€

Tφ and PRT, that
need to have unintepretable features valued through Agree with T.

(43) [c c [T several prizes [T [T past(-) [v [v be][A [A likely][T t(prizes) [T

€

Tφ [v [v

PRT][V award t(prizes)]]]]]]]]]

7 A Preliminary Comparison

In this section, we compare the number of computational steps taken by the probe-goal
parser to that taken by a corresponding parser PAPPI [Fong, 1991] in the Government-and-
Binding (GB)framework [Chomsky, 1981], for the analysis of examples (44a-b):

(44) a. There are likely to be awarded several prizes
b. Several prizes are likely to be awarded

We should point out that the results reported in Figures 7 and 8 are preliminary. The
parses given in Figures 7 and 8 are for example (44b) for the GB-based and probe-goal
parsers, respectively. Although the parses recovered are similar to one another, the
linguistic coverage of the two parsers are quite different. Currently, the GB-based parser
has much wider coverage, and carries more overhead in terms of computational
machinery, thereby affecting the results to some degree. However, even with this caveat
in mind, the difference in computational efficiency between the probe-goal parser and the
GB-based parser is noteworthy. This is reflected both in terms of the amount of structure
built and the number of movement operations during parsing. In the former case, the GB-
based parser constructs approximately an order of magnitude more syntactic objects than
its probe-goal counterpart. (The reported results are normalized in terms of elementary
trees units (eT).10) With respect to movement, there is a similar order of magnitude
difference. One reason for this striking difference is that the GB-based parser is designed
around a generate-and-test model of computation, where declarative principles interact
and freely combine both to provide for and limit the range of possible parses without

10 The GB-based parser builds structures by composing individual phrases rather than in
elementary tree-sized chunks. The exchange rate is roughly 5-to-1 since each fully
populated elementary tree contains 5 syntactic objects.

regard for linear order. By contrast, the probe-goal parser has been designed around a
more constrained model where linguistic constraints strictly follow the order imposed by
left-to-right, on-line computation.

Example Structure Building Move-α
(44a) 1864 LR ≅ 373 eT 26
(44b) 1432 LR ≅ 286 eT 67

Figure 7: PAPPI parse for Several prizes are likely to be awarded

Example Structure Building Agree/Move
(44a) 15 eT 5/2
(44b) 20 eT 7/7

Figure 8: Probe-goal parse for Several prizes are likely to be awarded

8 Conclusions

This paper has outlined a parsing-centric view of computation with probes and goals. The
use of elementary tree fragments instead of MERGE and MOVE follows from left-to-right
parsing constraints.
Two data structures, the Move and Probe boxes, have been introduced to encode theta-
theory and probe-goal locality, respectively. At any given point, the two boxes carry
forward deeper into computation syntactic objects that must still interact with other
objects not yet parsed. The short-term or “cache” memory represented by the boxes
obviate the need to perform lookback, i.e. a search back into the computational history for
appropriate matching elements. No lookback is a constraint imposed by the commitment
to on-line processing. To avoid unnecessary search whilst allowing movement sequences
to nest, the Move Box follows a stack organization. The Probe Box is able to hold onto
tighter bounds; it maintains its singularity through probe-goal unification in the case of φ-
incomplete intermediate probes.
Finally, preliminary investigations suggest that following through on these design
elements may result in more efficient computational systems, as compared to earlier
theories. Further work is required to determine whether this can be maintained as the
linguistic coverage of the probe-goal system expands.

Acknowledgements

This work has been supported in part by NEC Laboratories America. The author is
indebted to Roger Martin for his help in getting started on this project. Parts of this paper
have also been presented at the CUNY Psycholinguistics Supper Club. The author is also
grateful for comments received there.

References

Chomsky, N. A. Lecture on Government and Binding. Foris Publications, 1981.
Chomsky, N. A. Minimalist Inquiries: The Framework, MITWPL, 1998.
Chomsky, N. A. Derivation by Phase. MITWPL, 1999.
Di Scuillo, A.-M. The Asymmetry of Morphology. In Many Morphologies. Ed. Boucher,
P. Cascadilla Press, 2002.
Fong, S. Computational Properties of Principle-Based Grammatical Theories. Ph.D
thesis. Artificial Intelligence Laboratory. MIT, 1991.
Joshi, A. and Y. Schabes. Tree-Adjoining Grammars. In Handbook of Formal
Languages, vol 3. Eds. Rosenberg, G. and A. Salomaa. pages 69-123. Springer-Verlag,
1997.
Pesetsky, D. M. Zero Syntax: Experiencers and Cascades. MIT Press, 1995.
Phillips, C. Order and Structure. Ph.D thesis. MIT, 1995.
Stabler, E. P. Jr. Derivation Minimalism. In Logical Aspects of Computational
Linguistics. Ed. Retoré, C. pages 68-95. Springer, 1997.
Woods, W. A. Transition Network Grammars for Natural Language Analysis.
Communications of the Association for Computing Machinery. 13(10), 1970.

