Unification and Efficient Computation in
The Minimalist Program

Sandiway Fong

Departments of Linguistics and Computer Science
University of Arizona

Tucson AZ 85721 USA

Introduction

From the perspective of computational modeling, in recent years, the shift from a
declarative to an operational approach to the description of linguistic theories has
important implications for both efficient computation and the space of possible
implementations.

The declarative approach is exemplified by the Principles-and-Parameters (P&P)
Approach (Chomsky 1981), in which linguistic constraints (or filters) are abstractly
stated over syntactic configurations at various levels of representation, and perhaps
derivationally, between levels of representation. These filters may call upon a
variety of linguistic devices that may be generated in the course of a derivation,
including indices, chains (of movement), and various empty categories, e.g. traces.
The (not unsubstantive) problem of generating appropriate syntactic descriptions,
perhaps by some top-down, bottom-up or mixed assembly of syntactic objects, is
(apparently) left to the grammar designer. There is considerable freedom of
implementation. For instance, apart from basic dependencies between various
principles, the order of application of the constraints is undetermined. Perhaps the
most straightforward realization of the P&P Approach can be found in the largely
generate-and-test paradigm given in (Fong 1991).1 The radar plot in Figure 1
illustrates the degree of overgeneration, and thus computational inefficiency,

1In theory, the generate-and-test paradigm, i.e. generate linguistic descriptions and
explicitly rule out illicit cases, can be contrasted with a constraint-based approach,
i.e. one that emits only licit linguistic descriptions. From a computational complexity
perspective, the constraint-based approach offers the possibility of avoiding the
inefficiency inherent in over-generating linguistic descriptions. Careful comparisons
are necessary to verify that the bookkeeping necessary to maintain and manipulate
constraint descriptions does not trump the inefficiency introduced by simple
overgeneration. (See also note 2.) However, the author is not aware of any
substantial purely constraint-based implementations of the Principle-and-
Parameters Approach.

typically observed in the implemented parsing system. For the sentence John is too
stubborn to talk to Bill, only one, the correct parse, out of 33 candidate linguistic
descriptions successfully emerges from constraint testing.?

Parsing: John is too stubborn to talk to Bill

12

AT i7 16

Figure 1: Example of the generate-and-test paradigm

By contrast, recent theories in the Minimalist Program, e.g. (Chomsky 2001) and
thereafter, seemingly leave little wiggle room for implementational variation or
inefficiency. As will be described later in this paper, the assembly of licit syntactic
objects has been made precise down to a stepwise (fundamental) operational level.
Linguistic constraints such as those in the P&P Approach must be re-coded or re-
analyzed in terms of the interaction between just two fundamental operations,
bottom-up Merge (external, encoding syntactic composition and internal, encoding
sub-object displacement) and Agreement (between a recently-merged object that
function as a probe locally seeking already-merged sub-objects, termed goals). Both
probe and goal objects have uninterpretable features that must be valued (and
discharged) in the course of assembly.

2 In practice, serial constraint testing can be organized to favor the early elimination
of illicit candidates (to reduce implementational inefficiency). Note that most of the
candidates in Figure 1 are eliminated early on by the Case and Theta group of
constraints. Only one other parse (in addition to the correct parse) makes any
significant headway out of the Case and Theta group.

Computationally speaking, it is assumed that Agree applies as early as possible in
the derivation as Merge proceeds to build a composite syntactic object starting from
a pre-selected lexical array of basic functional and substantive objects. The
resulting syntactic object (SO) is simple in the sense that (artifactual) devices not
originally present in the lexical array cannot be introduced or built in the course of
assembly, e.g. no no traces, movement chains or indices can be added to syntactic
descriptions. Moreover, not only must a probe “fire” as soon as it is merged, but
probe-goal search is limited to local domains defined by Phase theory. A target with
an uninterpretable feature beyond the range, measured in Phases, of an intended
probe will cause narrow syntax computation to crash, i.e. terminate unsuccessfully.

We must make precise the notions of efficiency and complexity to be adopted in the
paper. In computer science, there are various methods of measuring complexity and
efficiency. For example, depending on the situation it may be appropriate to adopt
asymptotic analysis: if we assume the size of the data set, e.g. the length of the input
sentence, may increase without bound, we can ignore constant factors and compare
the fundamental rate of growth of the number of operations needed to compute an
answer over a fixed grammar with respect to different algorithms. At a more
abstract level, i.e. independent of particular grammar, it's sometimes possible to
compare the generative power and computational complexity of different grammar
formalisms: in general, we find there is a not unexpected tradeoff between a
formalism’s expressive power (what is encodable) and computational complexity.
For example, traditional formal language theory tells us there exists a sliding scale
of complexity from finite-state automata (equivalently, regular grammars or regular
expressions), through push-down (PD) automata (equiv., context-free grammars), to
nested-PD automata (equiv., context-sensitive grammars). It has been suggested
that natural languages may be characterized as nestling between context-free and
context-sensitive bounds of expressive power. In particular, mildly context-sensitive
grammars allow the expression of limited non-context-free dependencies found in
natural language but retain polynomial time parse-ability (a desirable
computational property denied to unrestricted context-sensitive grammars). It has
been shown that certain mildly context-sensitive grammar formalisms are all
formally equivalent in expressive power (Vijay-Shanker & Weir 1994).

With respect to the P&P Approach, we can compute the degree of overgeneration as
an approximation to system and implementational (in)efficiency.? However, since
the linguistic devices employed in the P&P Approach are many and varied, a usefully
limited characterization of its complexity is not practical. With respect to the
Minimalist Program, a (simplified) mathematical characterization of the
uninterpretable feature-checking mechanism can be found in Stabler’s (1997)
Minimalist Grammar (MG) formalism. This framework enjoys similar expressive

3 Generally, overgeneration could be due to insufficient grammatical constraints or
to the implementation itself. Given a sentence with a single licit parse, in the former
case, extra parses will be generated. In the latter case, the system will produce
multiple candidates but only the correct parse will survive constraint checking.

power and complexity to the mildly context-sensitive grammars mentioned earlier.
However, it remains to be seen whether MG can encode the full range of Agree and
Phase theory constraints described in (Chomsky 2001) and later publications.
Furthermore, the idea of overgeneration, introduced above for the P&P Approach, is
not a useful measure of efficiency in the case of the Merge/Agree system. Much like
a jigsaw puzzle, there is only one defined pattern per pre-selected lexical array.
Thus, correctly implemented, there should be only one way in which those objects
can be fit together.* The notion of efficiency therefore is only meaningful with
respect to the details of the Agree operation. In particular, we can evaluate the
extent or depth of the search for goals by probes and count the number of agree
relations computed in the course of a derivation. This paper argues that adopting
the mechanism of unification for feature matching will result in improved efficiency
in these terms. And that minimizing the number of operations and localizing goal
search as far as possible is in keeping with the spirit and goals of the Minimalist
Program. But first, we make precise the computational details of the Merge /Agree
system in the next section.

Background

(Chomsky 2001) sets out the following operations as being basic to computation.

(a) .. theta merge V& N
v
~N
v n
like mary
(b) theta merge V& N
merge v &V 1
theta merge N & v S e -
(r_ﬂ.e.:ge.T_ﬁ.y_ ﬂ?m { ,I.
_move to spec-T ! B b
mergeC&T N
n v
john| .
v v
L il ~
copy v n
like mary
Y theta merge V&N
C/ merge v & V ¥
theta merge N & v ‘//\\ .
merge T & v v /E\\ v i’ acc
move to spec-T \}' n N: ¢, Case
merge C&T like mary

Probe [v*] agrees with goal [n mary]

Figure 2: Basic operations

1. Merge “an indispensible operation of a recursive system” comes in two flavors.
a. External Merge takes two syntactic objects (SO) «, 8 and forms the set-
merged SO: {a, }. For labeling, one of either a or § must project, i.e.

4 This is true up to a point. For example, from the same lexical array, one can
assemble both John likes Mary and Mary likes John using the same sequence of steps,
depending on which nominal, John or Mary, is selected to be the subject and direct
object, respectively. See the sequence of operations shown in Figure 3.

label({a, $})=label(a) or label(). An example, with a = [vlike] and 8 =
[» mary], is given in Figure 2.a.

b. Internal Merge implements displacement. Selecting SOs a and vy, y
properly contained in «, form the aggregate set-merged SO {a, v}
Furthermore, label({a, y})=label(a).

Figure 2.b illustrates internal merge in the case of subject raising to
tense (t). a=[tt[v[njohn][v V [v [vlike][n mary]]]]], and subjecty =[x
john]. Note there are two copies of y. No trace is generated.

2. Agree obtains between an active probe SO a (active = still having
uninterpretable features), and an active goal SO . 8 should be the closest
locally available goal in the c-command domain of a.5 Features of a and [are
matched, and uninterpretable features of both probe and goal are deleted.

Figure 2.c illustrates probe-goal agreement for a =v* (transitive v) and 8 = [»
mary]. Goal [, mary] has interpretable ¢-features, i.e. person (3r4), number
(singular) and grammatical gender (feminine) but uninterpretable Case. The
probe v* has uninterpretable -features and but can value accusative Case.
v¥s uninterpretable -features are valued through matching with the goal’s
-features. The goal [» mary] in turn receives accusative Case from v*. After
Agree, neither probe nor goal remains active, as their uninterpretable
features have been valued.

A convergent derivation using Merge and Agree obtains when the initial selection of
SOs has been fully utilized and no uninterpretable features remain at large.

treeserver.tcl

TREE VIEWER

Zoom: (x1) (x4)
1. theta merge V&N
2. mergev &V C
3. theta merge N & v c/\t
4. merge T & v
5. move to spec-T n/\t
6. merge C& T john N
t v
/\
n v
john /\
v* Vv
\ n
like mary
(-

Figure 3: Parse of John likes Mary

Sentential structure is assumed to involve a sequence of (top-down) selection from
an inventory of primitive functional elements including the c (complementizer), t

5> The term “local” refers to the limits on search extent imposed by Phase theory on
the unrestricted c-command domain.

(tense) and v (little v), V pairs. These functional categories come in various flavors,
e.g. V may select for a thematic direct object, as with transitive and unaccusative
verbs. V may be objectless, as with unergative verbs. V itself is directly selected by v,
which may select for a thematic subject, as in the case of unergative or transitive
verb (v*, which can value accusative Case), or be subjectless, as in the case of
passives. Tense (t), which has an EPP or edge feature and requires a subject, may
come in uninterpretable ¢@-complete (tensed) or ¢-incomplete (infinitival) flavors;
however, only @-complete tense can value nominative Case.

An example of the parse produced for a simple transitive sentence John likes Mary is
given on the right in Figure 3. Although there are two copies of John, only the highest
copy is pronounced.® The convergent Merge/Agree derivation sequence is
summarized on the left, and traced in detail in Figure 4.7

0. lexical array [c][t][n john][v*][V like][n mary]

1. theta merge V&n [VIV like][n!case mary]]

2.mergev&V [VIV¥][VLV like][n mary]]]

Probe [v*] agrees with goal [n mary]

3. theta mergen & v [vIn!case john][v[v*][V[V like][n mary]]]]

4 merget&yv [t[t][v[n john][v[v*][V[V like][n mary]]]]]

Probe [t] agrees with goal [n john]

5. move to spec-T [t[n john][t[t][v[n john][v[v*][V[V like][n mary]]]]]]
6.mergeC&T [c[c][tln john][t[t][v[n john][v[v*][V[V like][n mary]]]]]]]

Figure 4: Merge/Agree sequence for John likes Mary

In the basic case, as in Figure 4, there is a simple, one-to-one correspondence
between probes and goals, and this leaves no room for computational optimization.
However, in more complex scenarios, Agree relations may simultaneously hold
between a single probe and multiple goals: in particular, when either the probe or
goal may be @-incomplete. In these cases, as we will see in the next section,
unification can improve the efficiency of the computational system.

Unification and Computation

We will illustrate the advantage of unification on the following examples from
(Chomsky 2001:4b-c):

3.
a. there are likely to be awarded several prizes

6 Inflectional morphology is not implemented in Figure 3. We assume a procedure
that spells out likes from t (tensed) + v* (¢: 3rd-sg-fem)+ V (like).

7 In Figure 4, the |F notation, where F is a feature, as in [n!case ...], is used to indicate
that a SO has a (currently) unvalued uninterpretable feature. In steps 1 and 3, Mary
and John have unvalued Case, respectively. By steps 2 and 4, the uninterpretable
Case in each case has been valued by probes v* and t, respectively.

b. several prizes are likely to be awarded

a. we expect there to be awarded several prizes
b. we expect several prizes to be awarded

Examples (3.a-b) and (4.a-b) contain the same passivized embedded clause to be
award-ed several prizes. The matrix predicate is a raising predicate, be-likely in (3.a-
b) and an Exceptional Case Marking (ECM) verb expect in (4.a-b). Within the
embedded clause, passive v is non-Case-valuing and the direct object (DO) is several
prizes. The adjectival past participle —-ed (PRT) is assumed to be is ¢-incomplete and
have uninterpretable Case (unrealized in English).® The embedded clause includes a
subject position, overtly occupied by a copy of several prizes in (4.b) and by
pleonastic there in (4.a); the embedded subject position is covert in (3.a-b). Finally,
tense is -incomplete (infinitival) and cannot value Case either.

Thus several prizes must get Case from the tense that heads the matrix clause in (3.a-
b), and matrix v* in (4.a-b), respectively. In fact, since matrix tense and matrix v*
are the only @-complete probes available, it (namely, tense and v*) must participate
in multiple agree relations with various goals in the embedded clause (including the
DO and PRT) in order for computation to converge.

1. theta merge V&N
2. merge PRT & V <
3. mergev&A N
4. merge T & v ¢ t
5. move to spec-T n t (i)
6. merge A & Tdef several prizes
7. mergev&A t v
8. merge T & v /\
9. move to spec-T v a
10. merge C& T be /\t
d
likely — ~~_ (i)
n t I
several prizes 7
tdef Vv

/\ .

v a (1)

be /\

a Vv
\") n
award several prizes

Figure 5: Several prizes are likely to be awarded

Consider the derivation of (3.b), illustrated in Figure 5. The DO several prizes raises
to embedded tense and then to the highest position at matrix tense where it is
pronounced. Along the way, the following Agree relations are computed: at position

8 PRT is assumed by (Chomsky 2001) to have uninterpretable number and gender
p-features.

(i), adjectival -ed (PRT) undergoes feature matching with the DO. The PRT’s
uninterpretable ¢-features are valued by the DO, which possesses interpretable -
features. However, both PRT and DO lack Case. At position (ii), the embedded tense
(tdef = infinitival) agrees with the DO and its uninterpretable @-features are valued.
However, tdef is ¢-incomplete and cannot value Case. Since tense has a EPP (or
edge) feature, the DO raises. At position (iii), matrix tense (t) probes and finds the
raised DO. Since t is ¢-complete, it values Case for the DO and its uninterpretable ¢
features are valued. In (Chomsky 2001), in order for the derivation not to crash, t
must continue to probe beyond the raised DO to value PRT’s Case feature as well.
Thus t is in a multiple agreement relation. However, if feature matching is
implemented using unification, the matrix tense’s secondary search can be avoided
altogether, thus making for more local (and efficient) computation. Suppose
unification is adopted. Then, at stage (i), the PRT’s and DO’s still unvalued
uninterpretable Case features can be unified together.? Subsequently, in stage (iii),
PRT’s Case feature will be valued at the same time as the DO’s, without the search
extension of (Chomsky 2001).

1. theta merge V&N
2. merge PRT & V C
3. mergev&A c/\t
4. merge T & v
5. merge expl & T 7Y i
6. merge A & Tdef there
7. mergev &A t v
8. merge T&v N
9. move to spec-T " a
10. merge C& T be /\t
d
n t (i)
there "
tdef Vv
/\ .
v a (i)
be
a Vv
ed /\
\ n
award several prizes

Figure 6: There are likely to be awarded several prizes

Consider next the derivation of (3.a), illustrated in Figure 6. The sequence of

operations, stages (i-iii), largely parallels that of (3.b) discussed previously, except
that the initial conditions will be different: in (3.a), the initial lexical array contains

9 Implementation note: more precisely, an unvalued uninterpretable feature will
have an uninstantiated logical variable as its value. Thus, when two unvalued
uninterpretable features are unified, their values are represented by the same
variable.

pleonastic there.10 Instead of the DO several prizes raising to embedded tense as in
(3.b), there-insertion via External Merge to embedded tense is triggered in (3.a).11
At stage (iii), matrix tense (t) will probe and encounter (first) there at embedded
tense. Both t and there have uninterpretable ¢-features. Thus, unlike (3.b), matrix ¢
must continue to probe all the way down until it encounters the in-situ DO several
prizes, whereupon its uninterpretable ¢-features, and the DO’s uninterpretable Case
feature, will be valued.

In the implementation, at this point several other operations must also complete for
the derivation to converge properly. Prior feature matching by unification will result
in adjectival —ed’s (PRT) Case feature being valued at the same time. Pleonastic
there’s uninterpretable ¢-feature will be also valued (as its ¢-feature was already
unified with matrix t’s). Without unification, feature matching must contain more
steps. In particular, there must be a probe and directly enter into an agree relation
with several prizes, after agreeing with (and probing beyond) PRT. Therefore
unification provides for an efficiency gain since there will be fewer relations
computed, despite matrix tense having to reach all the way down to find the in-situ
DO.

Not only does unification requires less search to value the same uninterpretable
features, it also simplifies bookkeeping from the viewpoint of recursive
computation. As mentioned earlier, it is assumed that Agree applies as early as
possible in the derivation as Merge proceeds. Once a probe has agreed with a goal
within a (still partially assembled) syntactic object, there is no need to revisit (or
later revive) that now-established relationship as syntactic object building proceeds
in compositional fashion beyond initial Merge of the probe. In other words, there is
no need to re-descend and check sub-object features: still unvalued uninterpretable
features (linked earlier by unification) will be automatically valued at the earliest
opportunity.

Consider now the derivation of (4.b), illustrated in Figure 7. Stages (i) and (ii) are
similar to that of (3.b), illustrated previously in Figure 5. However, unlike (3.b),
stage (iii) for (4.b) makes use of v* introduced along with the ECM verb expect. The
probe v*, which values accusative Case, agrees with the DO several prizes previously
raised to embedded tense.1? In (Chomsky 2001), v* must continue to probe past the
DO and value the Case feature of the PRT -ed. Assuming unification has already
taken place in stage (i) between the unvalued uninterpretable Case feature for both
PRT and DO, there is no need (in our implementation) to extend the domain of
search for v* past embedded tense. Thus unification has a locality advantage with

10 (Chomsky 2001) assumes there is p-incomplete, containing only a person feature.
11 In this implementation, it is assumed that External Merge is preferred (where
available) to Internal Merge.

12 Example pairs (3.a-b) and (4.a-b) differ with respect to the Case assigned to
several prizes, nominative and accusative by matrix tense and v*, respectively. This
difference is not manifested here. However, cf. we expect him/*he to be nominated.

respect to probe-goal search. To complete the derivation, we note that in stage (iv),
matrix tense (t) probes and values the nominative Case for the matrix subject
pronoun we.

Finally, in the case of (4.a), the derivation parallels that of (4.b) described above,
with the initial conditions changed by the presence of pleonastic there, as with (3.a).
At stage (iv) (not shown), v* agrees with there and must probe all the way down to
have its ¢-features valued by in-situ several prizes. Similar efficiency gains to (3.a)
are realized here: in particular, there does not need to probe several prizes in this
implementation.

1. theta merge V&N
2. merge PRT &V C
3. mergev&A C/\t
4. merge T & v
5. move to spec-T n/\t (iV)
6. merge V (ecm) & Tdef we 7L
7. mergev &V t v
8. theta merge N & v N (i
9. merge T & v n v]|
10. move to spec-T we */\V
11. mergeC& T v
g 7
t
expect — (i)
n t 1
several prizes "
tdef v
/\ -
v a (i)
be /\
a Vv
ed /\
\ n
award several prizes

Figure 7: We expect several prizes to be awarded

References

Chomsky, N.A. (1981). Lectures in Government and Binding. Dordrecht: Foris.
Chomsky, N. A. (2001). Derivation by Phase. In M. Kenstowicz (Ed.), Ken Hale: A Life
in Language, pp. 1-52. Cambridge MA.: MIT Press.

Fong S. (1991). Computational Properties of Principle-Based Grammatical Theories.
PhD thesis, Artificial Intelligence Laboratory, MIT.

Stabler, E.P. (1997). Derivational minimalism. In: C. Retoré (ed.), Logical Aspects of
Computational Linguistics (LACL '96), Lecture Notes in Artificial Intelligence Vol.
1328, pp. 68-95. Springer, Berlin, Heidelberg.

Vijay-Shanker, K. and D.]. Weir (1994). The Equivalence Of Four Extensions Of
Context-Free Grammars. In Mathematical Systems Theory}, Vol. 27, pp. 27-51.

