Computational Intelligence 696i

Language
Lecture 3
Sandiway Fong

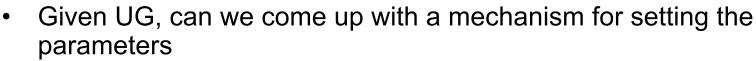
Administriva

- Has every group managed to install PAPPI?
 - (see instructions from last Thursday)
 - You'll need it to do homework 1

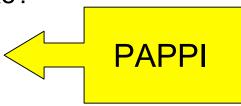
Last Time

 we talked about the problem of gap filling, a necessary component in the recovery of meaning

Examples:


- Which report did you file without reading?
- Which report did you file [the report] without [you] reading [the report]?
- *Which book did you file the report without reading
- These papers are easy to file without reading

Last Time


- speakers assume hearers share the same rules or decoding mechanisms
 - allow gaps to exist in input
- the gap decoding mechanism is pretty complicated
 - more soon
- poverty of stimulus: is it real?
 - if mechanism is really complicated
 - is the mechanism acquired (at all)?
 - is there enough data?
- the decoding mechanism
 - might be part of our genetic endowment
 - or a consequence of the pre-wiring
- possibly part of Universal Grammar (UG)
 - reduce the burden of the language learner

Today

- the very idea of UG is super-cool
 - very provocative hypothesis
 - all languages obey the same rules or have the same structure at some level of abstraction
- but attractive if true
 - e.g. important consequences for machine translation
- What might such a theory look like?
- Can it even be formalized?
- Can we compute with UG?
 - e.g. use it to parse sentences

– are the parameters learnable?

Today's Lecture

- goal is to take a concrete look at one possible instantiation of UG
 - the principles-and-parameters (P&P) framework
 - parameter: language-specific {0,1}
 - e.g. determines things like word-order SVO, SOV, VSO etc.
 - principle: e.g. a constraint or architectural feature
 - a primitive of the UG
 - may be parameterized

aka

- Government-Binding (GB) Theory
 - · best known instantiation being
 - Lectures on Government and Binding (Chomsky 1981)

The "Rules"

Minimalist Program (MP)

- current linguistic technology (research area)
- language is a computational system
 even fewer mechanisms

Principles-and-Parameters Framework (GB)

- reduction of construction-specific rules to
- fundamental principles (the atoms of theory)
- explanatory adequacy

Rule-based systems

- construction-based
- monostratal, e.g. context-free grammars
- multiple levels. e.g. transformational grammars

- to understand the totally revolutionary nature of the paradigm shift in linguistics that occurred around 1980
- we have to first look at pre-existing approaches

Examples:

- Which report did you file without reading?
- Which report did you file [the report] without [you] reading [the report]?
- *Which book did you file the report without reading
- These papers are easy to file without reading

- Gap filling:
 - Which report did you file without reading?
 - Which report did you file [the report] without [you] reading [the report]?
- Assume some phrase structure:
 - [_S subject [_{VP} V object]] for transitive V
- We have:
 - wh-phrase did [$_{S}$ you [$_{VP}$ [$_{VP}$ file **e**][$_{PP}$ without [$_{S}$ **e** [$_{VP}$ reading **e**]]]]]
- Construction-specific rule:
 - if [s subject [vp[vp V e-object]][pp P [s e-subject [vp V+ing e-object]]]]]
 - then e-subject = subject, e-object₂ = e-object₁

- Construction-specific rule:
 - if [s subject [VP[VP V e-object]][PP P [s e-subject [VP V+ing e-object]]]]]
 - then e-subject = subject, e-object₂ = e-object₁
- Where does this rule come from?
- How does anyone manage to learn this rule?
- Can we generalize this rule to other examples?
 - These papers are easy to file without reading
 - $[_S \mathbf{e}$ -subject $[_{VP}[_{VP} \text{ file } \mathbf{e}$ -object $_1][_{PP} \text{ without } [_S \mathbf{e}$ -subject $[_{VP} \text{ reading } \mathbf{e}$ -object $_2]]]]]$
- Revised rule:
 - if [s (e-)subject [vp[vp V e-object]][pp P [s e-subject [vp V+ing e-object]]]]]
 - then e-subject = (e-)subject, e-object₂ = e-object₁

- Revised rule:
 - if [_S (e-)subject [_{VP}[_{VP} V e-object₁][_{PP} P [_S e-subject [_{VP} V+ing e-object₂]]]]]
 - then e-subject = (e-)subject, e-object₂ = e-object₁
- BTW, e-object₂ has to be linked with an e-object₁
 (not an overt one) on the basis of examples like:
 - *you filed the report without reading
 - (cf. you filed the report without reading it)
 - $[_S \text{ you } [_{VP}[_{VP} \text{ filed the report}][_{PP} \text{ without } [_S \textbf{e} [_{VP} \text{ reading } \textbf{e}]]]]]$
- Have to know:
 - if [s subject [vp[vp V object][pp P [s e-subject [vp V+ing e-object]]]]]
 - then gap filling fails

- Have to know:
 - if [s subject [vp[vp V object][pp P [s e-subject [vp V+ing e-object]]]]]
 - then gap filling fails
- Note:
 - I'm using negative data to refine my rule
- Also works for:
 - *Which book did you file the report without reading
 - $[_S \text{ you } [_{VP}[_{VP} \text{ filed the report}][_{PP} \text{ without } [_S \textbf{e} [_{VP} \text{ reading } \textbf{e}]]]]]$
- Generalization (simplified):
 - (final) e-object requires another e-object to be present
 - e-object is a parasitic gap

- Consider:
 - *Which book did you file the report without reading
- How to say it in English?
 - assuming underlying structure is
 - you filed the report without reading which book

- repeat process for all constructions in the language
- end up with a huge number of complex rules
- (repeat for next language...)
- (Some) linguists found such construction-specific "rule-based" systems unsatisfactory
 - too many rules
 - rules seem somewhat arbitrary (rule systems too powerful)
 - can't possibly be learned (maybe)
 - lack of conceptual elegance
 - is there a better way?
 - can the apparent complexity be derived from more fundamental (and simpler) systems?

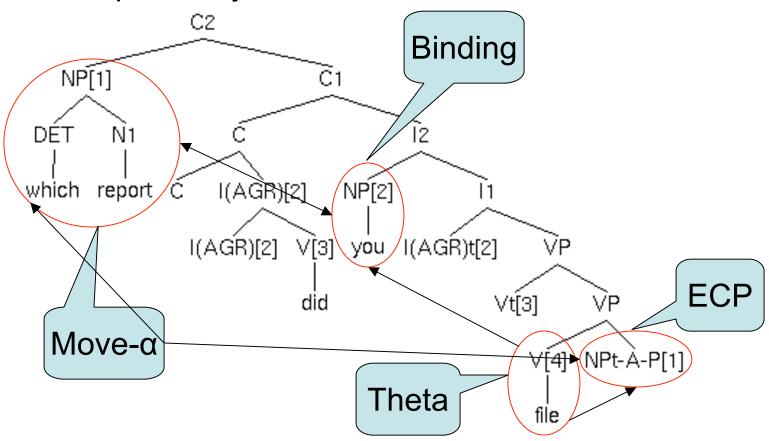
The "Rules"

Minimalist Program (MP)

- current linguistic technology (research area)
- language is a computational system even fewer mechanisms

Principles-and-Parameters Framework (GB)

- reduction of construction-specific rules to
- fundamental principles (the atoms of theory)
- explanatory adequacy


Rule-based systems

- construction-based
- huge number of rules

- No construction-specific pattern-matching rules
 - **if** [$_{S}$ (**e**-)subject [$_{VP}$ [$_{VP}$ V **e**-object $_{1}$][$_{PP}$ P [$_{S}$ **e**-subject [$_{VP}$ V+ing **e**-object $_{2}$]]]]]
 - then e-subject = (e-)subject, e-object₂ = e-object₁
- Not even generalizations like
 - (final) e-object requires another e-object to be present
- Won't find any principle in the system directly resembling these rules
- These are all lemmas (or generalizations) derivable from more primitive properties of grammar

- can't explain all the details in a few lectures
- there are dozens of principles
- give just a sketch of the general system
- the P&P framework is a modular system
 - of simple sub-theories, i.e. modules
 - each module is responsible for constraining or licensing of some class of element(s), e.g. eelements
 - these simple modules interact in complex ways to explain complex behavior

which report did you file?

- Some modules
 - X-bar theory
 - universal phrase structure
 - [X" specifier [X' X complement]]
 - binary-branching only
 - X ranging over {N,V,A,P,I,C,neg and a few others}
 - order of specifier and complement vary for particular languages
 - parameters: head-complement order etc.

- Some modules
 - Move-alpha (Move-α)
 - universal displacement property
 - what did John see
 - John see what
 - what did John see trace
 - principle: move any phrase anywhere
 - don't worry about cases where we can't displace a phrase (other modules will take care of that)
 - *what does Bill wonder who saw?
 - who did you mention that Bill believes that you saw?
 - *who did you mention Bill's belief that you saw?

- Some modules
 - Subjacency
 - locality of displacement: things can't move too far in one hop
 - interaction with X-bar theory (phrase structure)
 - *what does Bill wonder who saw?
 - who did you mention that Bill believes that you saw?
 - *who did you mention Bill's belief that you saw?
 - parameter: bounding node IP (English), CP (Italian)

- Some modules
 - Theta theory
 - who did what to whom
 - file: (filer,filed) read:(reader,read)
 - theta-roles: filer/reader => agent..
 - (patient, theme, experiencer)
 - arguments: the report, you
 - [V" specifier [V' V complement]]
 - principle: theta-criterion
 - every arguments needs one theta-role
 - every theta-role needs to be expressed
 - don't worry about e-elements (other modules' responsibility)

- Some modules
 - Case Theory
 - John is likely to be here
 - It is likely that John is here
 - *It is likely John to be here (cf. I believe John to be here)
 - Empty Category Principle (ECP)
 - subject/object asymmetry for e-elements
 - · who do you think (that) John saw?
 - who do you think saw John?
 - *who do you think that saw John?
 - Binding Theory (anaphors and pronouns)
 - interaction of displacement and binding theory
 - who that John knows does he like? (ambiguous)
 - He likes everyone that John knows (not ambiguous)

House of Cards Analogy

a system of modules

- delicate
- hard to build
- rely on each other
- interact in complex ways
- independent justification
 - principles affect many different kinds of constructions
 - theoretically more satisfying