Using Lexical Knowledge to Evaluate the Novelty of Rules Mined from Text

Sugato Basu, Raymond J. Mooney, Krupakar V. Pasupuleti, Joydeep Ghosh

Presented by Joseph Schlecht

Problem Description

- Modern data-mining techniques discover large number of relationships (rules)
 - Antecedent → Consequent
- Few may actually be of interest
 - − CS job hunting: SQL → database
- How do we find rules that are interesting and *novel*?
- Notice this is subjective

Problem Formalization

- Authors consider text mining
 - Rules consist of words in natural language
- Use WordNet and define semantic distance between two words
- Novelty is defined w.r.t the semantic distance between words in the antecedent and consequent of a rule

Semantic Distance

Given words w_i and w_j ,

$$d(w_i, w_j) = Dist(P(w_i, w_j)) + K * Dir(P(w_i, w_j))$$

- *Dist*(*p*) is the distance along path *p*
 - Weighted by relation type (15 in WordNet)
- Dir(p) is the number of directional changes on p
 - Defined 3 directions according to relation type
- *K* is a chosen constant

Weight and Direction Info

Relation	Weight	Direction
Synonym, Attribute, Pertainym, Similar	0.5	Horizontal
Antonym	2.5	Horizontal
Hypernym, (Member Part Substance), Meronym	1.5	Up
Hyponym, (Member Part Substance) Holonym, Cause, Entailment	1.5	Down

Novelty

- For each rule, a *score* of novelty is generated
- Let $A = \{ \text{set of antecedent words} \}$ and $C = \{ \text{set of consequent words} \}$ in a given rule
- For each word w_i in A and w_j in C- Score $(w_i, w_j) \leftarrow d(w_i, w_j)$
- Score of rule = average of all (w_i, w_j) scores

Experiment

- Measure success by comparing the heuristic's results of novelty scoring to humans'
- Used rules generated by DiscoTEX from 9000 Amazon.com book descriptions
- Four random samples of 25 rules were made
- Four groups of humans scored each sample
 - 0.0 (least interesting) to 10.0 (most interesting)
- One set was used as training for the heuristic (to find *K*), the other three were used for experiments

Results

	Human-Human Correlation		Heuristic-Human Correlation	
	Raw	Rank	Raw	Rank
Group1	0.350	0.338	0.187	0.137
Group2	0.412	0.393	0.386	0.363
Group3	0.337	0.339	0.339	0.338

Raw = Pearson's Raw Score

Rank = Spearman's Ranks Score

Results (cont)

Example of rules scored by the heuristic

- High Score (9.5)

 romance love heart → midnight
- Medium Score (5.8)
 author romance → characters love
- Low Score (1.9)

 Astronomy science → space

Discussion

- Humans rarely agreed with each other
- Correlation between heuristic and human was similar to human-human correlation
 - Success, but not too meaningful
- Provided statistical evidence that correlation is unlikely due to random chance
- Future tests would use dataset that had higher human-human correlation