The Color of Semantic Opposition in WORDNET

Sandiway Fong NEC Research Institute Princeton NJ sandiway@research.nj.nec.com

Persistence and Change of State Verbs

Event-based Models of Change and Persistence in Language (Pustejovsky, 2000):

John mended the *torn* dress John mended the **red** dress

Persistence and Change of State Verbs

Event-based Models of Change and Persistence in Language (Pustejovsky, 2000):

John mended the *torn* dress John mended the **red** dress

Mary cleaned the *dirty* table The waiter filled every *empty* glass Mary fixed the *flat* tire Bill swept the *dirty* floor Bill swept the *dirty* floor clean Nero built the *gleaming* temple Nero ruined the *splendid* temple

Persistence and Change of State Verbs

Event-based Models of Change and Persistence in Language (Pustejovsky, 2000):

John mended the *torn* dress John mended the **red** dress

Mary cleaned the *dirty* table The waiter filled every *empty* glass Mary fixed the *flat* tire Bill swept the *dirty* floor Bill swept the *dirty* floor clean Nero built the *gleaming* temple Nero ruined the *splendid* temple Change of State

Activity Accomplishment Creation Destruction

Event Template Representation

Change of State Verbs:

John mended the *torn/red* dress

mend: x CAUS y BECOME <STATE(*mended*)>

Event Template Representation

Change of State Verbs:

John mended the *torn/red* dress

mend: x CAUS y BECOME <STATE(*mended*)>

John CAUS the *torn/red* dress BECOME STATE(*mended*)> r

• Antonym relation between adjective and end state

System Description

• Antonym relation between adjective and end state

Use WORDNET 1.6, PROLOG version (Adj/Verb system 174K nodes, 600K links)

PROLOG/C Breadth-first search: shortest path first

System Description

• Antonym relation between adjective and end state

Use WORDNET 1.6, PROLOG version (Adj/Verb system 174K nodes, 600K links) PROLOG/C Breadth-first search: shortest path first

Example Output Mary rescued the drowning man C2 12 NP[1] I(AGŔ)t[1] mary VΡ NP[2] caus(x, become(y, <rescued>)) DÉT N1 I(AGR)[1] the be(y, <drowning>) rescued cancelled man drowning

Page 9: Third Internaional Conference on Computational Semantics (ICoS-3), 18-19th June 2001, Siena.

WORDNET

- Synonym set (synset) network for nouns, verbs, adjectives and adverbs
- Synsets connected by semantic relations (isa, antonymy, etc.)
- Size: 10K verbs (polysemy 2), 20K adjectives (polysemy 1.5)

WORDNET Relations

Relation	Description	Example
х нүр у	y is a hypernym of x	x: repair, y: improve
x ent y	x entails y	x: breathe, y: inhale
x SIM y	y is similar to x (A)	x: achromatic, y: white
x CS y	y is a cause of x	x: anesthetize, y: sleep
x VGP y	y is similar to x (V)	x: behave, y: pretend
x ant y	x and y are antonyms	x: present, y: absent
x sa y	x, see also y	x: breathe, y: breathe out
x PPL y	x participle of y	x: applied, y: apply
x per y	x pertains to y	x: abaxial, y: axial

WORDNET Relations

Relation	Description	Example
х нүр у	y is a hypernym of x	x: repair, y: improve
x ent y	x entails y	x: breathe, y: inhale
x SIM y	y is similar to x (A)	x: achromatic, y: white
x CS y	y is a cause of x	x: anesthetize, y: sleep
x VGP y	y is similar to x (V)	x: behave, y: pretend
x ANT y	x and y are antonyms	x: present, y: absent
x sa y	x, see also y	x: breathe, y: breathe out
x PPL y	x participle of y	x: applied, y: apply
x per y	x pertains to y	x: abaxial, y: axial

Using WORDNET

• Find shortest link with antonym relation in derivation chain:

Using WORDNET

• Find shortest link with antonym relation in derivation chain:

Results

Candidate Pair	Shortest Chain	Semantic Opposition	Search Space
mend-torn	5	Yes	1261
mend-red	-	No	11974
fix-leaky	5	Yes	12167
fix-blue	11	No	14553
fix-flat	-	No*	12286
mix-powdered	6	Yes	11931
comfort-crying	9	Yes	11359
blue-white	-	No*	24431
rescue-drowning	13	Yes	9142
clean-dirty	1	Yes	61
fill-empty	1	Yes	48

1. Thresholding

No upper limit on the length of the shortest chain.

1. Thresholding				
	No upper limit on the length of the shortest chain.			
Cand	lidate Pair	Shortest Chain	Semantic Opposition	Search Space
fix-bl	ue	11	No	14553
rescu	e-drowning	13	Yes	9142

1. Thresholding				
No upper limit on the length of the shortest chain.				
Candidate Pair	Shortest Chain	Semantic Opposition	Search Space	
fix-blue	11	No	14553	
ix-blue	11 i change	No a sa	14553	
	scolor — change			

Page 18: Third Internaional Conference on Computational Semantics (ICoS-3), 18-19th June 2001, Siena.

	2. Shortest Path Criterion			
Take the shortest chain.				
Candid	late Pair	Shortest Chain	Semantic Opposition	Search Space
fix-flat		-	No*	12286

Page 20: Third Internaional Conference on Computational Semantics (ICoS-3), 18-19th June 2001, Siena.

Page 21: Third Internaional Conference on Computational Semantics (ICoS-3), 18-19th June 2001, Siena.

3. Color and Opposition			
WORDNET organizes color by chromaticity.			
Candidate Pair	Shortest Chain	Semantic Opposition	Search Space
blue-white	-	No*	24431

Page 24: Third Internaional Conference on Computational Semantics (ICoS-3), 18-19th June 2001, Siena.

WORDNET organizes color by chromaticity.				
Candidate Pair	r Shortest Chain	Semantic Opposition	Search Space	
blue-white	-	No*	24431	
	John painted	l the <i>red</i> door <i>blue</i>		