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Definitions

l Semantic relatedness
– General term involving many relationships

l car-wheel (meronymy)
l hot-cold (antonymy)
l pencil-paper (functional)
l penguin-Antarctica (association)

l Semantic similarity
– More specific term involving likeness

l bank-trust company (synonymy)

l Distance
– Inverse of either one

l reldist(x)=semantic relatedness-1(x)
l simdist(x)=semantic similarity-1(x)
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Evaluation

l Theoretical examination
– Coarse filter

l Comparison with human judgment
– Lack of data

l Performance in NLP applications
– Many different applications (with potentially conflicting results)

l Word sense disambiguation
l Discourse structure
l Text summarization and annotation
l Information extraction and retrieval
l Automatic indexing
l Automatic correction of word errors in text
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Equation: Hirst— St-Onge
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Equation: Leacock— Chodorow
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Equation: Resnik
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Equation: Jiang— Conrath
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Equation: Lin
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Calibration: Step 1

l Rubenstein & Goodenough (1965)
– Humans judged semantic synonymy

l 51 subjects

l 65 pairs of words

l 0 to 4 scale

l Miller & Charles (1991)
– Different humans, subset of words

l 38 subjects

l 30 pairs of words

l 10 low (0-1), 10 medium (1-3), 10 high (3-4)
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Calibration: Step 2
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Testing: Simulation

l Malapropism
– Real-word spelling error
– *He lived on a diary farm.
– When after insertion, deletion, or transposition of

intended letters, a real word results

l Material
– 500 articles from Wall Street Journal corpus
– 1 in 200 words replaced with spelling variation
– 1408 malapropisms
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Testing: Assumptions

l The writer’s intended word will be
semantically related to nearby words

l A malapropism is unlikely to be semantically
related to nearby words

l An intended word that is not related is
unlikely to have a spelling variation that is
related to nearby words
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Testing: Suspicion

l Suspect is unrelated to other nearby words

l True suspect is a malapropism
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Testing: Detection

l Alarm is a spelling variation related to nearby words

l True alarm is a malapropism that has been detected
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Results: Suspicion
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Results: Detection
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Conclusion

l Measures are significantly different
– simdistJC on single paragraph is best

l 18% precision

l 50% recall

– relHS is worst

l Relatedness doesn’t outperform similarity
– WordNet gives obscure senses the same

prominence as more frequent senses
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Discussion

l Calibration of relatedness with similarity data

l Calibration point inaccurate

l Substitution errors untested

l Semantic bias in human typing errors not
addressed

l Binary threshold not best choice

l Frequency on synset, word, or word sense


