Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures

Written by Alexander Budanitsky Graeme Hirst Retold by Keith Alcock

Definitions

- Semantic relatedness
 - General term involving many relationships
 - car-wheel (meronymy)
 - hot-cold (antonymy)
 - pencil-paper (functional)
 - penguin-Antarctica (association)
- Semantic similarity
 - More specific term involving likeness
 - bank-trust company (synonymy)
- Distance
 - Inverse of either one
 - reldist(x)=semantic relatedness⁻¹(x)
 - simdist(x)=semantic similarity⁻¹(x)

Evaluation

- Theoretical examination
 - Coarse filter
- Comparison with human judgment
 - Lack of data
- Performance in NLP applications
 - Many different applications (with potentially conflicting results)
 - Word sense disambiguation
 - Discourse structure
 - Text summarization and annotation
 - Information extraction and retrieval
 - Automatic indexing
 - Automatic correction of word errors in text

Equation: Hirst— St-Onge

$$\operatorname{rel}_{HS}(c_1, c_2) = C - \operatorname{path} \operatorname{length} - k \times d$$

 c_1, c_2 : synsets

d : number of changes of direction in the path

- C : constant
- k:constant

 $\operatorname{rel}_{HS}(c_1, c_2) = k_1 - \operatorname{len}(c_1, c_2) - k_2 \operatorname{dirChanges}(c_1, c_2)$

Equation: Leacock— Chodorow

$$sim_{LC}(c_1, c_2) = -\log\left(\frac{\operatorname{len}(c_1, c_2)}{2D}\right)$$

 c_1, c_2 : synsets

D : overall depth of the taxonomy

 $sim_{LC}(c_1, c_2) = log(2) - log(len(c_1, c_2)) + log(D)$

Equation: Resnik

$$sim_{R}(c_{1}, c_{2}) = -\log(p(lso(c_{1}, c_{2})))$$

 c_1, c_2 : synsets

p(x): probability of encountering x

in a specific corpus

lso(x, y): lowest super - ordinate

Equation: Jiang— Conrath

dist_{JC}(
$$c_1, c_2$$
) = 2log(p(lso(c_1, c_2))) – (log(p(c_1)) + log(p(c_2)))
 c_1, c_2 : synsets

p(x): probability of encountering x

in a specific corpus

lso(x, y): lowest super – ordinate

simdist_{JC}(c₁,c₂) = log
$$\left(\frac{p^2(lso(c_1,c_2))}{p(c_1)p(c_2)}\right)$$

Equation: Lin

$$\sin_{L}(c_{1}, c_{2}) = \frac{2 \times \log(p(lso(c_{1}, c_{2})))}{\log(p(c_{1})) + \log(p(c_{2}))}$$

 c_1, c_2 : synsets

p(x): probability of encountering x

in a specific corpus

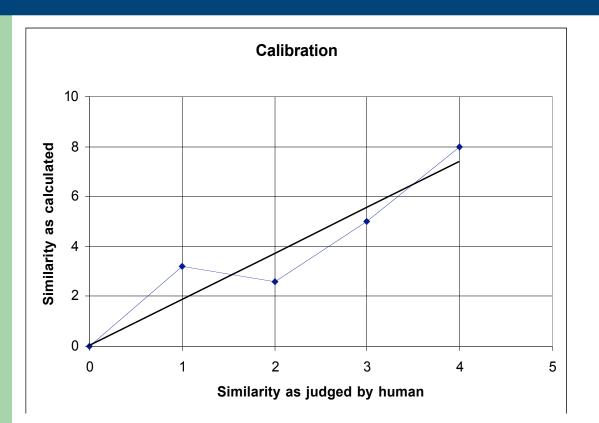
lso(x): lowest super - ordinate

$$\operatorname{sim}_{L}(c_{1}, c_{2}) = \frac{\log(p^{2}(\operatorname{lso}(c_{1}, c_{2})))}{\log(p(c_{1})p(c_{2}))}$$

Calibration: Step 1

- Rubenstein & Goodenough (1965)
 - Humans judged semantic synonymy
 - 51 subjects
 - 65 pairs of words
 - 0 to 4 scale
- Miller & Charles (1991)
 - Different humans, subset of words
 - 38 subjects
 - 30 pairs of words
 - 10 low (0-1), 10 medium (1-3), 10 high (3-4)

Calibration: Step 2



Testing: Simulation

• Malapropism

- Real-word spelling error
- *He lived on a diary farm.
- When after insertion, deletion, or transposition of intended letters, a real word results

Material

- 500 articles from Wall Street Journal corpus
- 1 in 200 words replaced with spelling variation
- 1408 malapropisms

Testing: Assumptions

- The writer's intended word will be semantically related to **nearby** words
- A malapropism is unlikely to be semantically related to **nearby** words
- An intended word that is not related is unlikely to have a spelling variation that is related to **nearby** words

Testing: Suspicion

- Suspect is unrelated to other nearby words
- True suspect is a malapropism

 $P_{S} = Precision_{S} = \frac{number of true suspects}{number of suspects}$ $R_{S} = Recall_{S} = \frac{number of true suspects}{number of true suspects}$ $F-measure_{S}|_{\beta=1} = \frac{(\beta^{2} + 1)P_{S}R_{S}}{\beta^{2}P_{S} + R_{S}}\Big|_{\beta=1} = \frac{2P_{S}R_{S}}{P_{S} + R_{S}}$

Testing: Detection

- Alarm is a spelling variation related to nearby words
- True alarm is a malapropism that has been detected

 $P_{D} = Precision_{D} = \frac{number of true alarms}{number of alarms}$ $R_{D} = Recall_{D} = \frac{number of true alarms}{number of true alarms}$ $F-measure_{D}\Big|_{\beta=1} = \frac{(\beta^{2}+1)P_{D}R_{D}}{\beta^{2}P_{D}+R_{D}}\Big|_{\beta=1} = \frac{2P_{D}R_{D}}{P_{D}+R_{D}}$

Results: Suspicion

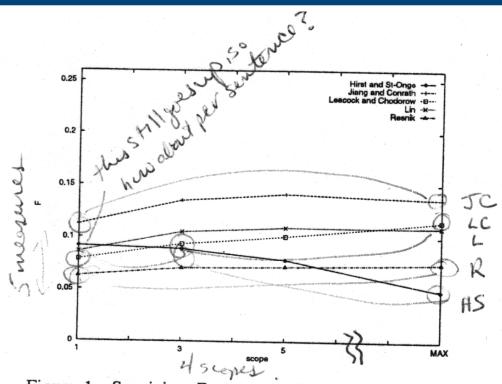


Figure 1: Suspicion F-measure (F_S), by measure and scope.

Results: Detection

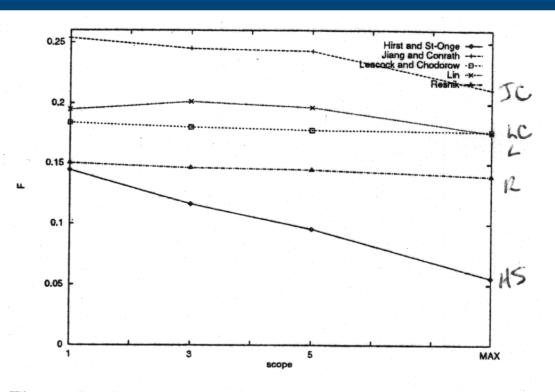


Figure 2: Detection F-measure (F_D) , by measure and scope.

Conclusion

- Measures are significantly different
 - simdist_{JC} on single paragraph is best
 - 18% precision
 - 50% recall
 - rel_{HS} is worst
- Relatedness doesn't outperform similarity
 - WordNet gives obscure senses the same prominence as more frequent senses

Discussion

- Calibration of relatedness with similarity data
- Calibration point inaccurate
- Substitution errors untested
- Semantic bias in human typing errors not addressed
- Binary threshold not best choice
- Frequency on synset, word, or word sense