CUNYForum Noe. 1 1976
ON THE WEAK GENERATIVE CAPACITY OF INFINITE GRAMMARS

D. Terence Langendoen
The Graduate Center

1.

Linguistic motivation for infinite grammars.

It has been known
for some time that adequate grammars of human languages must contain
infinitely many rules. TFor example, the base components of such

grammars must contain infinitely many type-2 (context~free phrase~
structure) simple rewrite rules

to express the fact that sentences
may have any number of conjoined sentences as immediate constituents

(Chomsky and Schiitzenberger, 1963: 133; Chomsky, 1965: 224}, To
illustrate, consider the infinite set of type~2 rules given in i.
(1) s+s¢cCs

§+88CS

S+8588585CSs

LA)

S+NV

N + {Alice, Bob, Carol, Davel}

V + {jumped, kicked, lunged, moved}
€ + {and, or}

A grammar containing this set of rules, unlike any finite type~2

grammar, is capable of generating sentences with n conjuncts,

2 <n < o, wyith flat constituent structures of the type
{S [S Xy }S .o [S X]S]S’ which is one of the structure-types

that adequate grammars for human languages must be able to provide
for such sentences.

13

2. Rule schemata and hypergrammars. One conventionally represents

infinite grammars like ! in finite fashion by replacing all but
finitely many of the rules of such grammars by finite rule schemata.
Thus 1 could be represented in schematic form as in 2.
(2) s+8cCSs (n > 0)

S+ NV

N +~ {Alice, Bob, Carol, Dave}

V * {jumped, kicked, lunged, moved}

C + {and, or}
However, from the representation of infinite grammars in finite
schematic form, it cannot be immediately determiﬁed what the weak
generative capacity of a given class of infinite grammars is., Thus,
consider the class of all infinite type-2 grammars, that is, the class
of 31l infinite grammars all of whose rules are of type-2. While it
is the case that some such grammars do generate type~2 languages, not
all of them do.2 For example, the infinite type-2 grammar in 3, and
schematized iﬁ 4, generates a language L = {a"bla" E n > 0} that can-
n&t be generated by any finite type-2 grammar,
(3) ST*ABA

S+AABBAA

S+-AAABBBAAA

(&) 8 + AP T AR (n > 0)
A= a

E->b

Obviously, to determine the weak generative capaclty of classes
of infinite grammars, one must take into consideration more than just

the types of rules contained in those grammars.

One must also con-
sider the types of devices that are used to construct the rules of

those grammars, which the schemata indirectly represent,.

To determine
what those devices are, one cannot simply consider rule schemata as
abbreviatory conventions, analogous to the finite abbreviatory con-
ventions represented by the use of curly braces and parentheses.

Rather they must be thought of as standing for the rules of another

grammar, which enumerate all but finitely many of the rules of the
infinite grammars that they are part of.

For terminological con-
venience, let us call a grammar that generates all and only all of the

rules of another grammar a hypergrammar.3 In what follows we will be

concerned only with finite simple rewrite hypergrammars that generate
infinite simple rewrite grammars.

To illustrate the notion of hypergrammars, we give in 5 a hyper-
grammar that generates the iInfinite grammar in 1.
(5)

I=> {A @ A E I}
A=>% 5¢Csg
$=>¢ g

P=> g

@=> §=+NV

15

A => N -+ {Alice, Bob, Carol, Dave}

T => V »+ {jumped, kicked, lunged, moved}

T => C -+ {and, or}

The hypergrammar in 5 is, obviously, a type-3 grammar. The fact that
there is a type-3 hypergrammar that generates the grammar in 1 must
be the reason why that grammar does not generate a language that is
outside the generative capacity of finite type-2 grammars, On the
other hand, any hypergrammar that generates the grammar in 3 cannotl
be a type~2 grammar, and it must be this fact that explains why the
grammar in 3 generates a language that is outside the generative

capacity of finite type~? grammars.

3. The weak generative capacity of classes of infinite grammars.

There is, in fact, a straightforward relation between the weak gener-
ative capacity of a class of infinite grammars, on the one hand, and
the weak generative capacity of the class of hypergrammars that gen-
erate them and the type of rules contained in them, on the other.
This relation is expressed by the following theorem,
Theorem. Let T be the class of hypergrammars of type-m
(o é:; £ 3) that generate the class I of infinite grammars all of
whose rules are at most of type-n (0 < n £ 3). Then the weak gen-
erative capacity of T is that of type-p grammars, where p = min(m, n).
Proof. Clearly, p ¥ m, since, given any language generated by
a type-m grammar, one can construct a type-m hypergrammar that gen-

erates an infinite type-3 grammar that simply lists all and only

16

T s e

all of the sentences of that language. Clearly also, p ¥ n, since
all the type-n languages can be generated by a subset of the grammars
in T, namely those in which only finitely many of the rules are
used in the derivation of sentences. Hence p < m and p < n. To show
that if m < n, ther p = m, and that if n < m, then p = n, we must
consider a number of cases, as follows. For gimplicity, we assume
also that no finite abbreviatory de§ices are used In the sta%ggent
of the rules of each grammar G in T.

Case 1: m=0,0<n<3;0rn=20,0 £m< 3. We show that
p = 0 by showing that the sentences of any language generated by an
infinite grammar G in I' can be recursively enumerated. Clearly the

rules of an infinite grammar G of type-n (0 £ n < 3) can be recursively

~enumerated, We enumerate the derivations of sentences generated by

G as follows. The first line of a derivation of a sentence generated
by G is the initial symbol §. Comstruct the second line by choosing
some rule of G (if any) whose left-hand side consists of that symbol;

the righﬁmhand side of that rule is the second line of that derivation.

" Nowlett = ¢xw be the k-th line of the derivation under construction,

and let n be the length of t. Then construct the kt+lst line 7' =

¢Pw of the derivation by selecting any rule of the form y»¥. If such
'ﬁ'rule exists, it will be possible to find it after a finite search,
since its left-hand side is of length n or less. Continue in this
fashion until either the derivation is terminated or it cannot be

continued.s By this procedure every derivation of every sentence of

L{G) can be enumerated.

17

Case 2: m=1, 1 <ng3;orn=1,1<m< 3, We show that
p = 1 by showing that the amount of computation space required for
generating a sentence ¢ of L(G) is linearly bounded by the length n of o.
1f all of the rules of G necessary for the derivation of ¢ are avallable
to the device that computes that derivation, the amount of computing
space it requires to generate ¢ is linearly bounded by the length of o,
since the rules of G are of type-n (1 < n £ 3). If some rule of G
needed for the derivation of o is not immediately available to that
device, we assume that it is equipped to search for that rule among
the rules of G, and upon finding it to apply it. Since the length of
the longest rule of G that could be applicable in the derivation of o
is 2n+l (the left~ and right-hand sides of that rule may be at most
of length n, and the rewrite symbol »> is of length 1), and since the
hypergrammar H in T that generates those rules if of type-m (I <m < 3),
the amount of computing space regquired to enumerate the potentially
applicable rules of G is linearly bounded by the length of o. The
total amount of computing space required for the derivation of ¢ in
L{(G) (both for determining what rules are applicable and for carrying
them out) .is linearly bounded, therefore, by the length of o,

Case 3: m =2, 2 <n < 3. We show that p = 2 by using the
pumping lemma for type-2 grammars to replace each G in T by a weakly
equivalent finite type-2 grammar. Let H in T be such that L{(H) = G.
Since H is a type-2 hypergrammar that generates an infinite language,
by the pumping lemma for type-2 grammars, there is at least one non-

terminal symbol A in H such that there is a sentence z, in L(H)} of

18

- .

sufficient length, and strings u, v, w, x, v {(w and not both v and X
nonnull) over the terminal vocabulary of H, such that z = uvwry, and

T §> vhy, A %> vAX, and A §> w, and for all k > O, uvkixXy 1s in L(E).

Let us call the latter sentences members of the family of Z) . All but
a finite number of sentences of L(H) must be members of one of a

finite number of such families.

Now, the sentences of L(H) are the rules of G. Suppose v in some
z, is nonnull. Then u = Asu' for some A in the nonterminal vocabulary
of G and some string u' in the vocabulary of G (otherwise the rewrite

symbol - of G would appear in v and hence more than once in some rule
of G, which is impossible).

of the form A+u'vkkay.

Thus the members of the family of 2y are
Now let R be a nonterminal symbol that does

not appear in G. Form a new grammar from G by deleting éll of the

infinitely many rules of the form A+u'vkkay from G, and adding in
their place the following three rules:

fi) A+u Ry

(i1) R->v R x

(iii) R+ w

Do the same for all of the finitely many other families in L(H) for

which v is nonnull. Similarly, suppose v in some z, is null, Then

X cannot be null, and uw = A3t for some nonterminal symbol A in G and

some string t over the vocabulary of G, Form a new grammar from G

by eliminating the infinitely many rules of the form A+txky, and

adding the following three rules in their place:

19

(iv) A->R vy
(v) K~ R x
(vi) R-> 1t
Do the same for all of the finitely many other families in L(H) for
which v is null. The grammar G' that results from all of these sub-
stitutions is a finite type-2 grammar that is weakly equivalent to G.

Case 4: m =3, 2 <n £ 3. We show that p = n (i.e., that p = 2
ifn=2and p=3 if n = 3) by using the pumping lemma for type-3
grammars to replace each G in I by a weakly equivalent finite grammar
of the appropriate type.

Let H be in T such that L(H) = G, Since H is a type~3 hyper-
grammar that generates an infinite language, by the pumping lemma for
ﬁype—3 grammars, there is at least one nonterminal symbel A in H such
that there iz a sentence z) of sufficient length in L(H), and strings
u, v, w (v and either u or w nonull) such that zp = uvw and (if H is
left-linear) ¥ §> Aw, A §> Av, and‘A §> u, and for all k > O, vy is
in L(H). As in case 3, call the latter sentences members of the
family of z,. All but a finite number of sentences of L(H) must be
members of one of a finite number of such families; similarly if H
is right-linear.

Since the sentences of L(H) are the rules of G, it must be the
case as in case 3 that u = A»u' for some A in the nonterminal vocab-
ulary of G and some string u' in the vocabulary of G. Thus members
of the family of =z

, are all of the form A»u'vKw. Now let R be a non~

terminal symbol that does not appear in G. If G contains type-2

20

rules, form a new grammar from G by deleting all of the infinitely

many rules of the form A+u'vkw and adding in their place the following

three rules:

(vil) A +Rw

(viii) R+ R v

(ix) R = u'

Do the same for all of the remaining finitely many families in L(H).
The resulting finite grammar G' is a type~2 grammar that is weakly
equivalent to G,

If the rules of G‘are type~-3, then they are all either left-
linear or right-linear. Suppose they are left-linear. Then v, W can
consist only of terminal symbols in the vocabulary of G, and u' must
be of tﬁe form x or Bx for some nonterminal symbol B of G and some
string x of terminal symbols of G. Replace each of the infinitely
many rules of G of the form A+u'viw by the rules vii, viii, and ix
above. Do the same for all of the remaining families in L(H). The
resulting grammar G' is a finite left~linear type-3 grammar G' that
is weakly equivalent to G,

Similarly, if the rules of G are right-linear, then u' and v can
consist only of terminal symbols of the vocabulary of G and w must be
of the form x or xB for some nonterminal symbol B of G and some string
x of terminal symbols of G. Replace each of the infinitely many rules
of G of the form A+u'v&y by the following three rules,

(x) A=u'R
(xi) R-+v R

(xd1) R+ w

21

Do the same for each of the remaining families in L(H). The resulting
grammar G' is a finite right-Ilinear type~3 grammar G' that is weakly
lequivalent to G.

This completes the proof of the theorem.

The theorem can be expressed graphically by the matrix given in
Figure 1, in which the numbers in the cells of the matrix give the weak
generative capacity of each class of infinite grammars.

Type of hypergrammar

0 1 2 3
& & 0{0 0 0 o0
™ B
T2 1l 11 1
EOU
w 210 1 2 2
° 4
a2 o 310 1 2 3
oS 1
B e

Figure 1. Weak generative capacity of classes of infinite
grammars as a function of the type of rules contained in them
and the type of hypergrammar required to generate them.

As a corollary to this theorem, we note that the categorial sub-
component of the base component of a standard generative~transfore
mational“grammar (where either the lexical categories or certain
designated lexical items can be thought of as the terminal symbols of
that subcomponent) is an infinite type~2 grammar that is weakly equiv-
alent to a finite type-2 grammar. This follows from the fact that
there is a type-3 hypergrammar that generates all and only all of the

rules of that subcomponent.

22

Notes

1 By a simple rewrite rule, we mean a rule of the form ¥+ that
enables subderivations ending in lines of the form v = $xw to be con=-
tinued with lines of the form 7' = ¢$¥vw. A simple rewrite grammar is
a grammar that contains solely simple rewrite rules. Throughout this
paper we use the Chomsky (1959) hierarchy of simple rewrite grammars,
in which unrestricted rewriting systems are called type~0 grammars;
grammars in which all rules are such that the length of y is at Jeast
that of y are calied type~l grammars (type-l grammars properly include
the class of context-sensitive phrase-structure grammars): context—
free phrase~structure grammars are called type-2 grammars; and finite-
state (or one-sided linear or regular) grammars are called type-3
grammars. We modify slightly Chomsky's definition of type-3 grammars
50 as to allow them to contain rules all of the form A»xB or A+y (right-
linear grammars), or all of the form A+Bx or A»v (left-linear grammatrs),
where A and B are elements of the nonterminal vocabulary of those grammars,
and x and y are finite strings (y nonnull) of elements of the terminal
vocabulary of those grammars.

2 There is, in fact, a type~3 grammar that is weakly equivalent
to 1. A type-3 grammar that generates the same language that is gen-~
erated by the grammar in 1 is given in 1i.

(1) 8 > {Alice, Bob. Carol, Dave} A
A =+ {jumped, kicked, lunged, moved} ({C, T})
C > {and, or} {8, T}
T » {Alice, Bob, Carol, Dave}l B
B &+ {jumped, kicked, lunged, moved} {(C, T}

3 Note that it is legitimate to think of the rules of a grammar
as the sentences of a formal language, formed by concatenation over
a vocabulary consisting of the terminal and nonterminal vocabulary of
the grarmar, its rewrite symbol, and the symbols used to express finite
abbreviatory conventions in that grammar, such as parentheses, curly
and angle braces, and the comma.

Similarly, it is legitimate to think of entire grammars as sen-
tences of a formal language (for example, the language consisting of
all type-2 grammars defined over a fixed, finite vocabulary), provided
that those grammars do not have infinitely many rules. Thus, one can
also conceive of a grammar that generates all and only all of the
grammars of a certain type. Such grammars are not hypergrammars in
the sense defined here; they may be called, following Tevelt (1974),
grammar-grammars (or, if they generate hypergrammars, they mayv be
called hypergrammar-grammars) .

23

4 For convenlence, we represent the nonterminal vocabulary of
a hypergrammar by upper-case Greek letters that are distinct from
letters of the Roman alphabet, the initial symbol by I, and the rewrite
symbol by the double-shafted arrow =>. The terminal vocabulary of a
hypergrammar is the entire vocabulary of the infinite grammar that it
generates, together with the rewrite symbol -+ of that grammar, and the
symbols used to represent finite abbreviatory conventions in that grammar.

5 We assume that one of the ways for a derivation to block before
termination is for a line to be constructed that exactly repeats some
earlier line. This assumption is necessary to insure that a derivation
that could ultimately terminate cannot endlessly cycle before terminating.

References

Chomsky, ¥. (1959). 'On Certain Formal Properties of Grammars."
Information and Control, 2, 137-67.

(1965). Asgpects of the Theory of Syntax. Cambridge:
MIT Press.

Chomsky, N. and M. Schiitzenberger. (1963). "The Algebraic Theory
of Context-Free Languages.” Computer Programming and Formal

Systems. P, Braffort and D. Hirschberg, eds. Amsterdam: North~
Holland. Pp. 118-61,

Levelt, W. J. M, (1974). Formal Grammars in Linguistics and

Psycholinguistics. Vol 2: Applications in Linpuistic Theory.
The Hague: Mouton.

24

