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SETS AND SENTENCES
D. T. LANGENDOEN AND P. M. POSTAL

1. BACKGROUND AND GOALS

LINGUISTIC research over the past quarter century has been largely
guided by two major assumptions introduced by Noam Chomsky:
(D) that the best theory of a natural language (NL) is a grammar that
generates its sentences and (i) that human beings know an NL in
virtue of knowing that grammar, These assumptions cannot be main-
tained. The collection of sentences comprising each individual NL is
so vast that its magnitude is given by no number, finite or transfinite.
This means that NLs cannot, as is currently almost universally assumed,
be considered recursively enumerable, hence countable (or denumerable)
collections of sentences. For if they were such, the magnitude of each
would be no greater than the smaliest transfinite cardinal number o
It then follows that there can be no procedure, algorithm, Turing
machine or grammar that constructs or generates all the members of
an NL, since, by definition, such & grammar can construct oI generate
only recussively enumerable, hence countable, collections. A systemn
which constructs some NL sentences must inevitably leave most NL

. sentences unconstructed.

2. THE ANALOGY WITH'_CANTOR’S RESULTS

2.1 Co-ordination

Our conclusion concerning the vastness of NLs is based on a
demonstration of a strict parallelism between the collection of all
sentences of an NL and the collection of all sets. The discovery around
the tusn of this century that the latter collection is noft itself a set led to
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fundamental reforms in logic and the foundations of mathematics. The
same reasoning that establishes that the collection of ajl sets cannot
itself be a set (a collection with fixed magnitude, finite or transfinite)
also establishes that the collection of all NL sentences cannot be a set.
Consequently, fundamental revisions of currently standard views of
NLs and gramimars are required for reasons similar to those that operated
in the foundations of logic and mathematics,

We assume that co-ordinating particles like English and, or, etc., have
a structure in which, quoting Gazdar (1981, p. 158):

.. . the co-ordinating word forms a constituent wifch the immediately
following node and is not simply 4 sister of all the conjuncts.

 However, we generslize to eliminate reference to ‘following’ to cover
NLs where the co-ordinating particle follows. For concreteness and ease
of reference, we assume these particles belong to & grammatical cate-
gory called Conj, whose clements have the propesties in (1):

(1) If Aisa Conj node, then thers exist nodes B and C such that:
(a) Thereisa grammatical category Q such that both B and C
are QO nodes; and '
(p) Aisadaughter of B and the unigue sister of C.

In these terms, we say that nodes instantiating variable B in (1) are
conjuncts, while those instantiating C are subconjuncis. Ignoring the
order of sisters, every conjunct thus has the structure in (2):

@ - 0

_ Q Conj

We allow a Conj terminal to be null for NLs without visible co-
ordinating particles and for cases in NLs like English where one 01 more
instances of Conj are not visible. Thus we take (32) to have a structure
like (3b), associating nodes with numbers for ease of Teference:
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(3) (g} Tom and Bill
() _ NP (1)
NP (2} NP (3
Conj (47 NP () Conj {6} NP (T
& Tom and Bill

In this case, according to our definitions, nodes 2 and 3 are conjuncts,
while nodes § and 7 are subconjuncts.

Nodes like 1 in (3b) will be referred to as co-ordinate compound
constituents {nodes], definable as in C (4):

(4) A constituent (node) Q is a co-ordinate compound of gram-
_matical category C if and only if:
(2) Qs of category C;and
(£) Q has at least two immediate constituents; and
(¢) each of Q’s immediate constituents is a conjunct.

Observe that nothing in the definition of ‘co-ordinate compound’ imposes
any upper limit, finite or transfinite, on the number of immediate
constituents in such structures. Co-ordinate compounds are evidently
subject to the two fundamental Jawful restrictions in (5)

(5) All sister conjuncts are of the same grammatical category as
(@) each other;and
(b) the co-ordinate compound constituent of which they are
immediate constituents.

However, we take C in (4) to vary only over so-called ‘major’ categories,
so as not to exclude the possibility of, e.g. compounds of the caiegory
Plural with exclusively singular immediate constituents, stc.

Co-ordinate compounding in NLs is, we claim, governed by a funda-
mental condition we refer to as co-ordinate compound closure, To
characterize this prineiple it is convenient fo introduce two more basic
terms, co-ordinate projection, and profection set s in{6):

(6) Let U beasetof constituents all of category Q and of cardinality
> 1 and let T be some co-ordinate compound of category Q.
Furthermore, assume that:
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() each conjunct of T has an element of U as a subconjunct,
and

(b) each element of U is a subconjunct of some conjunct of T;
and .

(¢) no element of U appears more than once as 2 subconjunst
of any conjunct of T; and

(&) if two elements of U occur as subconjuncts of conjuncts
C;and G of T, then C; and C;occur in a fixed order. Where
Cjand Cyare of distinct lengths, assume the shorter precedes;
where Cjand Cjare the same length, assume some arbitrary
order.

In this case, we say both that Tis 2 co-ordinate projection of U

and that U is the projection sef of T. .

(¢) Example: Let U = {Laura, Maxine, Brooks). Then one may
choose T = Laura, Maxine, and Brooks.

(64) demands that the subconjuncts for T be drawn exclusively from U,
while (6b) demands that each element of U be used to form some sub-
conjunct. (6¢) prevents repetitions of elements from the projection set.
(6b,c) together determine inrer ¢lia that the number of comjuncts in
a co-ordinate projection is identical to the number of elements in its
projection set. (6d) insures that different orders of conjuncts are irrele-
vant. Given the latter, co-ordinate projections of a set of constituents
are unique wp 0 choice of element of Corj. For simplicity, the discus-
sion is henceforth limited to some unique element of the category
Conj, thus determining a unique co-ordinate projection for any set of
constituents, making it sensible. to speak of the co-ordinate projection
of such a set.

As stressed by E. Keenan (personal communication}, it is imporiant
to show that every subset of 2 coliection of constituents of category Q
has a co-ordinate projection. But this is straightforward. For consider
some such subset U. Take the cardinality of U to be k, with k indiffer-
ently finite or transfinite. Clearly, from the purely formal point of
view, there is 4 co-ordinate compound W belonging to the category Q,
hence having immediate constituents of the category Q. Moreover, each
of these immediate constituents is 2 conjunct. Since there are no size
restrictions on co-ordinate compounds, W can have any number, finite
(> 1) or transfinite of immediate constituents. W can then, in particular
have exactly k such constituents. Each of these (conjuncts) has one
and only one subconjunct. The set of all such subconjuncts, call it V;
obviously then alsc has exactly k members. To show that W is a co-
ordinate projection of U, it then in effect suffices that there exist a
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one-to-one mapping from U to V. But this is trivial, since the two sets
have the same number of elements. However, the conclusion that gach
subset U of constituents of category Q has a co-ordinate projection
does ot mean that the co-ordinate projection is necessarily well-formed
in the NL from which U is drawn. The latter can only be determined
by axioms to this effect, to which we now turn,

The notion of closure for co-ordinate compounding is stated in (7):

{7) The Closure Principle for Co-ordinate Compounding
If U is a set of constituents each belonging to the collection,
Sy, of (well-formed) constituents of category Q of any NL, then
Sy cOntains the co-ordinate projection of U.

Crucially, principle (7) has 2 ‘cecursive’ property in that it also refers
10 cases where members of U are themselves co-ordinate compounds.

Although it is not entirely clear for what categories principle (7)
wolds universally, it is, we claim, at least valid for the one case of real
concern here: where Q is the category S(entence). This yields (&),
which we take as a truth about all NLs:

(8) Closure under Co-ordinate Compounding of Sentences

(a) If U is a set of constituents each belonging to the collection,
S, of (well-formed) constituents of the category S of any
NL, then the co-ordinate projection of U belongs to Sy

More precisely, (8a) can De stated as in (85):

(Py Let L be the coltection of all members of the category S of
an NL and let CP(U) be the co-ordinate projection of the
set of sentences U.
Then:

(YU)(U C L+ CP(U) €L)

Principle (8) i mo doubt too general in one vespect, Sentences
(clauses) fall into types, declarative, interrogative, imperative, etc. And
2 co-ordinate compound is in genera: only freely permitted for members
of a single type. One could amend (8) appropriately, by restricting the
mersbers of U 1o 2 single type. We ignore this complication in the word-
ing of what follows.

The principle of closure for co-ordinate compounding of sentences
formalizes the following cbservation about collections of attested NL
sentences. Given any set of 3s {of the same type) of some NL L, there is
a well-formed co-ordinate compound of those Ss in L, as illustrated in
{9}, where a double arrow means that the sentence on its right is the
co-ordinate projection of the set of sentences on its left.
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(9) (a) {Gregory is handsome; It is raining; Figs can kill} ==
(b} Gregory is handsome, it is raining and figs can kill.
(¢) {Gregory is handsome; It is raining; Figs can kili;
Gregory is handsome, it is raining, and figs can kill} ===
(d) Gregory is handsome, it is raining, figs can kill and
Gregory is handsome, it is raining and figs can kill.

We now.show that the closure principle for co-ordinate compound-
ing leads to the conclusion that there is no set of NL- sentences just as
the axiom of powers leads to the conclusion that there is no set of all
sets.

2.2. The Cantorian Analogue

Let L be an NL whose ordinary vocabulary contains the name Z
of a particular person or elephant. Assume L contains 2 denumerably
infinite set, So, of noncompound sentences, each of which is about the
entity Z, named by Z. This assumption seems uncontroversial, since,
for many known NLs, it is easy 1o effectively specify such a set. For
example, if L is English, S, could be the set in (10), where Z = Babar.

(10) {Babar is happy; [ know that Babar is happy;-I know that
1 know that Babar is happy; I know that I know that T know
that Babar is happy ... }

Assume that L is closed under co-ordinate compounding of clauses, that
is, obeys (8). Then L also contains a set 8, made up of ali the sentences
of S, together with all and only the co-ordinate projections of every
subset of S, with at least two elements, that is, with a set containing

one co-ordinate projection for each member of the power set of Sy

whose cardinality is at least 2. The clumsiness of this' formulation
arises from the fact that co-ordinate projections, given the nature of
co-ordination, require by definition at least two subconjuncts, while
power sets confain singletons as well as the null set. To simplify the dis-
cussion, we utilize the notation >]-power set of X, meaning that
proper subset of the power set of the set X containing all and only the
power set elements of cardinality 2 or greater, To illustrate, if S, is as
in (10), then S, can be taken as the set in (11):

(11) {Babar is happy; I know that Babar is happy; I know that
I know that Babar is happy; . . . ; Babar is happy and I know
that Babar is happy; Babar is happy and I know that I know
that Babar is happy; . . . ; Babar is happy, I know that Babar
is happy, and I know that I know that Babar is happy; . . . }
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By assumption, the cardinality of 5y is Ny To determine the
cardinality of S;, one can appeal directly to Cantor’s theorem. Each
member of 8, can be put intc one-to-one correspondence with a non-
null member of the power set of Sg, determined as follows. Each non-
compound sentence of S; corresponds to the singleton set whose
unique element is the corresponding sentence of Sy. Each co-ordinate
compound sentence of 8, corresponds 1o its projection set. Hence sach
compound senteace of 5y with two conjuncts corresponds to the sst
made up of the corresponding pair of sentences of 8;, each compound
sentence of S, with three conjuncts corresponds to the set made up of
the corresponding triple of sentences of So. Simitarly, for each finite
subset of S, of cardinality >3, there is a corresponding compound
sentence of S, namely, the co-ordinate projection of that subset of
S,. Finally, each infinife subset of S¢ also corresponds to a compound
sentence of S,, although, of course, each such co-ordinate projection
is of transfinite length., Overall then, each co-ordinate compound
sentence of S, corresponds to a member of the > l.power set of Sq.
Since the cardinality of the power set of any denumerably infinite set,
and hence of Sy, is of the order of the continuum, that is ¥, the
cardinality of 8; is R,. Further, since L is closed under co-ordinate
compounding, the sentences of S, are all contained in L, and therefore,
if L has any determinate magnitude, this must be of at least the
cardinality N;. 7

The set §; as a whole is characterizable as in (12), where ‘U’ is the
sign for set union,

(12) Si = SD U Ko,
where Ko = {x: (3y)(y € So /A % is the co-ordinate projection of ¥)}

In other words, S; is the union of S; and the set Ko consisting of all and
only the co-ordinate projections of the > 1-power set of Se.

The cardinality of §, exceeds that of Sq precisely because it containg
sentences with transfinitely many co-ordinated constituents. The
cardinality of the set 8o, made up of the union of 8, with all those
sentences of S, with at most finitely many copjuncts as immediate
constituents is also ¥, But the set 8,', the union of all of the sentences
of 8, together with the co-ordinate compound sentences of L. whose
immediate constituents are conjuncts with only sentences of §; as sub-
conjuncts, is of the cardinality ®;.

If English is governed by (8) and contains the sentences in Sy, then
it also contains the sentences in S;. That is, English contains at least as
many sentences as the continuum.




234 D. T. LANGENDOEN AND P. M. POSTAL

But it evidently must contain even more, Consider the union of 5,
and a set containing the co-ordinate projection of every member of the
>1-power set of 8;. That is, consider the set Sq, definable anzlogously
to 8, in (12), asin (13):

(13) Sg = S! i Klf
where K, = {x: (3y)y CS1AX S the co-ordinate projection.of ¥}}

Via the procedure outlined for 8,, the members of 8, can be put into
a one to one correspondence with the members of the power set of
8;, excluding the nuil set. Hence the cardinality of S; = N,. Puther,
since L is closed under co-ordinate compounding, S, is also included
within L. Consequently, the magnitude of L., if determinate, is at least
of the cardinality H,.

Just as Cantor showed for power sets in general, the possibility of
forming greater and greater sets of NL sentences always remains. For
any set of sentences like. Sy, S;, etc., there is always still bigger set
tneluded in L, given by the schematic characterization in (14):

(14) 8; =84 Y K;_;, where i > 0 and where
Kyor = {x: (3yXy C8a A xisthe co-ordinate projection of y)}

At no point can 2 set of sentences be obtained that exhausts an NL
having sentence co-ordination governed by the closure law (8). Naturally,
this will not be less true if one begins, more realistically, with ail of the
finite sentences of that NL, not just an artificially small subset of these
like (11) containing ohly expressions sharing & single name. To prove
that no set of sentences can exhaust an NL, it suffices to construct an

_analogue of Cantor's Paradox from the contrary assumption, & con-

struction which the previous remarks make directly possible. We call
this Tesult the NL Vastness Theorem, and state it as (15):

(15) The NI Vastness Theorem

THEOREM: NLs are not sets {are megacollections)

Proof:

Let #X be the cardinality of an arbitrary set X and let
L be the collection of all sentences of some NL.

(z) Assume to the contrary of the theorem that L is a set.

(b) Then L has a fixed cardinality, #L.

(¢) Since L is closed under co-ordinate compounding, L con-
tains a subset consisting of all and only the co-ordinate
projections of the >1-power set of L. Moreover, each
member of the >1-power set of L has a co-ordinate pre-
section. Hence (3ZYZ < L), where:
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Z={x 3y CLAx: the co-ordinate projection of y)}

(d) Since many sentences in L, in particular, all those elements
of L which are not co-ordinate compounds, are nof in Z,
7, is a proper subset of L. That is, not only Z C L but in
facgt ZCL.

(¢} Hence, #Z <H#L.

(f) But #Z is, given the definition of Z in (15¢), of the order
of the power set of L.

(g} Hence, by Cantor’s Theorem, #Z > #1.

(h) Since conciusion (1 5g) contradicts conclusion (15e),
assumption (154} is false.

The assumption that L is a set, hence 2 collection having a fixed cardi-
nality, yields a contradiction and is thus necessarily felse. Therefore,
the collection L is not a set. But Lin (15) was arbitrarily chosen. Just
as Cantor's Paradox shows there is no singie set containing all nonaull
sets, the NL Vastness Theorem shows that an NL can be identified with
no fixed set of seatences at all, no matter how great its cardinality.
Like the collection of alt sets, an individual NL must be regarded as a
megacollection.

2.3 The Mathematical Argument asa Linguistic Argument

Having constructed the central argument of this study, we now
comment on its character, The demonstration in {15) that NLs are not
sets but megacollections has, like any attempt to apply a mathematical
result to some domain of facts, two distinguishable aspects. There
must, first, be a proof of the relevant theorem, 2 question of formal
mathematics, involving a purely demonstrative argument and, second,
an argument, in general necessarily nondemonstrative, that the relevant
domain of facts manifests all crucial properties of the mathematical
assumptions underlying the proof of the theorem. In this case, the
relevant theorem is the NL Vastness Theorem, whose proof corresponds
closely to the proof of Cantor’s Paradox. The second aspect, the conse-
guence that this formal proof ‘applies’ to NLs, involves the claim that
NLs do indeed model a system of mathematical objects having the
properties which yield the NL Vastaess Theorem. Only by confirming
the second aspect of the argument can ong avoid the problem properly

~ noted by Hockett (1966, p. 186):

An ironclad conclusion about a certain set of ‘languages’ {in the
formal sense)} can be mistaken for a discovery about real human language.
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There is another way to pul the point. As with any proof from
assumptions A 1o 2 conclusion Z, one can regard the NL Vastness
Theorem as a proof of the conditional A = Z. This prool does not
require that A be true. But the detachment of Z as a true consequence
then only follows via Modus Ponens, which requires that the antecedent
of a conditional be true. Therefore, (13) is a proof of 2 conditional
whose consequent is the conclusion that N1s are megacollections. But
to derive the actual aonconditional conclusion, that is, the NIL. Vastness
Theorem itself, via Modus Ponens requires that the antecedent to be
true. In effect, this antecedent is the claim that NL co-ordination is
governed by the closure principie (8). Surely, scepticism about the NL
Vastness Theorem must focus on this axiom, which isnota traditionally
or currently accepted linguistic principle.

Let us therefore briefly refocus attention on condition (8), the claim
that NLs.are closed under the co-ordinate compeunding of sentences.
Although not a familiar principle of past or present linguistics, (8)
expresses, we claim, a profound truth about NLs. It says not only that
the principles of grammatical theory and the rules of grammar directly

relevant to characterizing co-ordinate structures must not themselves pre-.

clude closure, but that no other rules can have this effect either. No
matter how one characterizes the collection of co-ordinate structures
of English, closure would be violated if some independent English rule
said, for example, that there was2 maximum bound on number of con-
iuncts, O Ong which said that some particular pair of clauses of the
same type could not form a co-ordinate compound, etc. Similarly, (8)
would be violated if some rule of English required every co-ordinate
compound to have more than k conjuncts for some fixed k, or if there
were a jule (‘filtter’) precluding, €.8. the sequence of English words
and-rit. But the known facts about co-ordinate compounding in NLs
reveal the existence of no such constraints, Principle (8) claims that
the lack of such is nonaccidental.

Closure principle (8) plays a role in the proof of the NL Vastness
Theorem anaiogous to that played in set-theoretical discussions (in
particular, the proof of Cantor's Paradox) by axioms which determine
that every set does have & power set. Such axioms guarantee that the
collection of sets is closed under power setting in essentially the way
principle (8) guarantees that the colisction of sentences of aa NL is
closed under co-ordinate compounding. It seems that there are exactly
as good grounds for the latter as for the former.

Principle (8) mentions a set U of constituents but says nothing
about its magnitude. Clearly, one obtains a varety of different closure
1aws by imposing differential magnitude requirements on U, asin (16):
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(16} {a) U hasless than k elements (k a positive integer).
() U has less than Ny elements.
(c) U hasless than X, elements.
{d)} U hasless than &, elements.

There are infinitely many possible magnitude restrictions on U, each
limiting the collection of possible projection sets for co-ordinate com-
pounds, If any of these are adopted instead of (8}, the arpument that
NLs are not sets will obviously not go through, because at some point
in the definitions of sets 83, Sg, etc., schematized in {14), the resulting
co-ordinate compounds will not be determined to be included in the
language.

More precisely, if one of the denumerably many restrictions in
(164) is chosen, the collection of co-ordinate compounds is not deter-
mined to be more than a finite set, while if (16b) is chosen, it is a
countably infinite set. Consequently, it is critical for the conclusion
that (8) Tather than any element of (16) is the correct closure principle
for co-ordinate compounding. In particular, it is critical to justify (8}
against (16b).

- First, (8) is simpler then any statement in (16), because, unlike those
statements, (8) szys nothing at all about magnitude. Hence (8) is, by
Occam’s Razor, theoretically preferable to any formulation covered by
(16), since it is always simpler not o specify anything about the magni-
fude of some coliection than to say something about its size. And this
obviously holds for U in (8).

Second, one can regard grammars and grammatical theory as con-
cerned with projecting from the properties of attested NL sentences,
the basic data of grammatical investigation, to the maximal lawfully
characterized collections of which these attested sentences are acciden-
tal examples. One wants, given a sample of English sentences, to charac-
terize the collection of 2li English seatences, and, giver a sample of NL
sentences, the collection of NL sentences per se. General scientific
principles demand that the projections from the small finite samples
to the desired characterizations involve the maximally general (ie..
strong) laws (principles) projecting the regularities found in observed
cases to the collections as wholes. One can never justifiably replace
a stronger or more general projection by a weaker or less general one
unless this is factually motivated, in particular, by the excess generality
leading to some false entailment, eg. & false claim about attested
examples, some contradiction, etc. ‘

For example, there is no basis for not projecting from attested
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sentences of various lengths to the maximally general view that sen-
tences of any length whatsver are possible, unless this yields some false
entailment, which has never been shown. Therefore, there is no basis
for not projecting from attested co-ordinate compounds of various
lengths to the maximally general view, represented by (8), that co-
ordinate compounds of any Jength whatever are possible, unless this
yields some false entailment, which again has not been shown.

Thus, there are two reasons for choosing the closure principle (8)
over any of the alternatives in (16): (8) is both simpler and stronger.

Obviously, the conclusion which (8) determines, that NLs are mega-
collections, is itself no basis whatever for rejecting this principle, any
more than the conclusion which the Axiom of Powers determines,
that the collection of all sets is a megacollection, is a ground for reject-
ing that axiom. Essentiaily, principle (8) says that it makes no more
sense 1o think that structures otherwise having the structural (linguistic)
properties of co-ordinate compounds nonetheless fail to be co-ordinate
compounds if they have more than some fixed number of conjuncts
than it does to think that aggregates fail to be sets if they have more
than some fixed mmber of elements. That is, it is as arbitrary to claim
that some structures have too many conjuncts to be proper co-ordinate
compound sentences as it ¥ to claim that some aggregates have oo
many elements to be {power) sets.

To sum up, (8), the principle of closure under co-ordinate compound-
ing, plays an absolutely crucial role in the argument that NLs are mega-
collections. More precisely, it is the critical assumption guaranteeing
that NLs are models of a system of objects for which all the mathe-
matical assumptions underlying the proof of the NL Vastness Thecrem
hold.

The argument given in (15) involves the existence of sentences of
transfinite length, the postulation of which, of course, clashes with
standardly held but unmotivated and never justified views. The standard
view is that while there is no longest sentence, every sentence is of
finite length, that is, has a length less than ¥, This amounts to imposi-
tion of what we will call g length law on NL sentences, Qur claim is
that no such length law is true of NI, sentences. 1% is crucial, moreover,
that the nonexistence of a length law is nof a premise of the proof in
(15) but, rather, is a corollary of the closure principle (8). This is
shown in (17), which demonsirates the nonexistence of any length
law for NL sentences, finite o1 tyansfinite, The proof utilizes & predicate
Length, taken 1o be a measure of the number of words in 2 sentence.
We also make use of the self-evident fact that the length of any co-
ordinate projection is not less than the cardinality of its projection
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set. This is only to say that each member of a projection set T contri.
butes at least one word to the co-ordinate projection of T.

(17 The No Upper Bound Theorem
THEOREM: Let L be the collection of all sentences of some
NI.. Then:

(VK)(Cardinal (X) = (3x)}{x €L A Length(X} > 3}
Proof:
{g) Assurie to the contrary that j is a cardinal such that:
(WYXY €L = Length(Y) <j).

(#) Every proper subset of L.then has a cardinality </. For
the closure axiom (&) determines that every such subset is
the projection set of some co-ordinate projection which is
a sentence of L. And, as we have seen, the length of any .
co-ordinate projection is at least that of the cardinality of
its projection set. Hence if some C C L had >j members,
some Z € L would have a length >/, namely, for a Z equal
to a co-crdinate projection of C.

(¢) We now show that if every proper subset of Lhasa cardi-
nality < ;, the maximal cardinality of Lis;. There ate two
cases, since L is either finite or not finite.

(i) Case A. L is finite. Consider one member, M, of the
set of biggest proper subsets of L. M will have one less
member than L. Since M has, from (b), a cardinality
<, the maximum cardinality of L is ;.

(i) Case B. L is transfinite. It follows from set theory
that L is equipoliént to some proper subset of L, call
it D, Since, from (&), D has a cardinality <7, so
does L.

(d) It follows from (c) that L is a set with </ members,
gontradicting the NL Vastness Theorsm. Hence (2) is
alse.

The consequence that NLs are megacollections rather than recursively
enumerable sets cannot be rationally avoided by-a decision to adopt the
finiteness limitation on sentence size or its analogue for the number of
conjuncts even in the absence of substantively or logically motivated
bases for such conditions. We are rejecting an argument which might
go something like (18).
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(18) The finiteness limitations are justified just because they sub-
sume NLs within the realm of recursively enumerable sets ané
Turing machine grammars, 8 mathematically well-understood
domain about which a rich, useful body of knowledge has
been accummlated.

The fallacy in such a defence of a closure principle like (16} has
already in effect been uncovered by Chomsky several times in different
contexts. First, consider (19):

(19) Chomsky (1957: 23):

We. might arbitrarily decree that such processes of sentence forma-
tion in English as those we are discussing cannot be carried out more
than n times, for some fixed n. This would of course make English a
finite state language, as, for exampls, would a Lmitation of English
sentences to length of less than a million words. Such arbitrary limita-
tions serve no useful purpose, however. [Emphasis ours: DTL/PMP.}

While Chomsky’s comment about ‘fixed n’ was intended only to cover
finite instantiations of n, the force of the remarks clearly carries over

to his own choice of length law and all others as well, since these are

nothing but instances where n varies over transfinite cardinals. The
same point applies to (165).

Again, criticizing a certain argument which nesd not concern us,
Chomsky made the correct observation in (20%:

(20) Chomsky (1977a: 174):

In the first place, he is overlooking the fact that we have certain
antecedently clear cases of language as distinct from maze running,
basket weaving, topological orientation, recognition of faces or melodies,
use of maps, and so on. We cannot arbitrarily decide that ‘language’
is whatever meets some canons we propose. Thus we cannot simply
stipulate that rules are structure-independent, . . . :

Since NLs aré independently given, they are not subject 10 arbitrary
decisions about sentence length or any other property. Just as one
cannot simply decide that rules are (or are not) structure-dependent,
one cannot just decide that sentences are {or are not) all finite, or
that the number of conjuncts in & co-ordinate compound is always
finite. Tn both cases, arguments based on the nature of the attested
part of the subject matier are required. Consequently, one can no
more decide that each sentence is finife in length than one can decide
that each is less than one thousand morphemes in length or that gech
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grammar is 2 finite state system. Unfortunately for linguistics, the
sentence finiteness decision has been arbitrarily made and maintained
for nearly thirty years, But this past mistake contains no justification
for its continuation.

3. IMPLICATIONS
3.1 Rerarks

So far we have established the two relatively simple substantive
points about NLs in (1):

(1) (2) The NL Vastness Theorem; that is, the existence of un-
bounded co-ordination subject to the closure principle (8)
of Section 2 entails, viz a Cantorian analogy, that the
collection of sentences in NL is (i) bigger than countably
infinite, and {ii), in fact, 2 megacollection.

(b) The No Upper Bound Theorem, that is; there is no length
law on NL sentences.

Moreover, we showed that (15) is 2 logical consequence of the closure
principle, which thus provides 2 principled reason for the nonexistence
of NL length laws. Since the argument for (1) was based exclusively
on English data, it is more accurate to say that (1) follows for any NL
manifesting co-ordinaticn with the essential properties characterized
garlier.

However, we know of no NL ever described which has even been
elaimed to lack co-ordination of, inter alie, clauses, as expressed by
Dik:

(2) Dik (1968: 1):

For a vadety of reasons the so-called ‘soordinative construction’ is of
special importance to linguistic theory. In the first place, this type of
construction seems to be a universal feature of natural languages.
Secondly, not onty does its existence seem to be universal, but the way
in which it is manifested in each particular language also shows a quite
general, if not universal patiern. )

Consequently, we hypothesize that both {1z, b) are proper universal
truths about NLs. '

3.2 Linguistic Consequences

(1) can be used, as earlier discerned facts about the nature of NLs
have been, to falsify proposed grammatical theories on the grounds that
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they are too weak. Just as certain facts about NLs were taken to show
that finite state grammars, context-free grammars, efc., are 100 weak,
the fact that NLs are megacollections shows that any conception of
NL grammars under which they are Turing machines is inadequate.
Put differently, (1) entails that any theory which claims NLs are recur-
sively enumerable sets is false. We formulate this consequence exphqﬁly
as a theorem referred to as the NI Nonconstructivity Theorem, givenl
in (3)

(3) THEOREM: No NL has any constructive (= proof-theorstic,

generative or Turing machine) grammar

Proof:

(z) LetLbeanNL and let G be a constructive grammar.
(b) G specifies exactly some collection, call it C(G). From the
" definition of constructive systems, G recursively yeramer-
ates C(G), which is hence & countably infinite or finite set.
(¢) The NI, Vastness Theorem shows that Lis e megacollection.
(&) Thus (Eisenberg (1971 304)) L > C(G); and hence
C(G)# L.
(¢) Therefore, G is not a grammar of L.
Since G and L in (3) were arbitrarily chosen, it has been shown that
no constructive system is a correct grammar of any NL.
Although the NL Nonconstructivity Theorem is straightfoward, its
consequences are both extraordinarily broad and deep. For, as Chomsky
observed in the passage in (4):

(4) Chomsky (1957 34):

The strongest possible proof of the inadequacy of 2 jinguistic theory
is to show that it literally cannot apply to some natural language.

In Chomsky’s terms then, the NL Nonconstructivity Theorem sho_ws
that every variant of every view taking NL grammars to be constructive
devices is a folse theory of NLs. This means that every logically possible
vaant (not only those so far described) of all the framworks in (5} are
false:

(5) Frameworks Faisified as Theories of NLs by the NL Non-
constructivity Theorem
Finite Grammar (Hockett (1968))
Finite State Grammar (Reich (1969))

Phrase Structure Grammar (Harmon (1963); Gazdar (1981,

1982))
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Lexical/Functional Grammar {Bresnan (1582))

Reslistic Grammar (Brame {1979))

Stratificational Grammar (Lamb (1966); Lockwood (1972))
Tagmermics (Longacre (1964))

Mountague Grammar (Partee (1975, 1976); Dowty (1978,

1982)) .

Natural Generative Grammar (Bartsich and Vennemann
(1972))

Semantically Based Grammar {Chafe (19702, 1970b))
Functionzl Grammar (Dik (1978, 1980))

Daughter Dependency Grammar {Hudson {1976); Schachter
(1978

Phrasal Core Grammar (Keenan (1980z, 19800))
Transformational Grammar (Chomsky (1957, 1965, 19772,
1981,1982))

Corepresentationdl Grammar (Kac (1580))

Relationally Based Grammar (Johnson (1579))

Dependency Grammar (Hays (1 964))

Categorial Grammar (Lambek (1961))

Cognitive Grammar (Lakoff and Thompson (1975
Meaning-Text Models (Meltuk (1981))

The Abstract System (Harris (1968))

Configurational Grammar (Koster (1981))

Neostructural Grammar (Langendoen (1982))

Augmented Transition Networks (Woods (1970))

String Adjunct Grammar (Joshi, Kosaraju and Yamada
(19720 :

Bquational Grammar (Sanders (1 97y

Systemic Grammar (Hudson (1971))

Any constructife system distinet from all of the preceding
frameworks.

The NL Nonconstructivity Theorem actually follows from 2 conclu-
sion infinitely weaker than the NL Vastness Theorem, namely, just
from the fact that NLs are at least of the magnitude of the ¢ontinuum,
which suffices to justify line (d)in the proof of the NL Nonconstructivity
Theorem with no reference to megacollections. Hence the stage of the
analogy in (12) of Section 2 involving just the set there catled S,
already suffices to falsify all views limiting grammars to the characteriza-
tion of recursively enumerable sets. This means the conclusion follows
from the existence of sentences of no greater than denumerably infinite
length,
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The NL Nonconstructivity Theorem stales that no NL has 2 con-
structive grammar. 1t might be wondered to just what extent the NL
Vastness Theorem i incompat e with constructivity. In particu’la:,
given the syntactic nature of the data of which the NL Vastness
Theorem 15 pased, one night assume that the result was compa{ib‘le,
for example. with either of poth constructive phonology andfor (inter-

i grammar capable ©
characterizing ransfinite sentences cannol contain constructive phono-
logical of semantic components. )

The implications of the NL Nonconstructivity. Theorem can De
summed up 25 foliows. Since she ideas Of genesative grammar became
dorninant in the late 1950s, linguistics has in general agsumed that the
task of g;ammatical theoty involves apgwering the question: what 18
the right form of generative grammar for NLs? The meny disputes
which have divided linguists OVeT the past quartes century a1 then
raducible bY and large 10 disputes OVeT clajms about right formy’ . Some
linguists have believed that WL grammars contain transformational

peen the assumplion that if is POS ible through appeal 0 some COMm-
pination of proof—theoretlca‘; devices 10 construct someé generative
rammar for sach NL. But this assumption is falsified by the NL Non-
constructivity Theoreln.

There 18 another way to characterize the consequences summed up
i (1) and in the NL Nonccmstructivity Theorem. The false finiteness
fimitation OB sentence SIZC getermined the claim that NLs fall some*
where in the domain of objects characterizable py what one might
call theoretical computer Science Their grarmmars would be some SOTL
of Turing machine, their sentence aggrepates recursively enumerable
sets, Since NLs are subject 1010 length 12w, they do not {ie within this
Timited class of mathematical objects. While this conclusion May, for
yarious socio-historical reasons, DE displeasing 1o some, it jnvolves
no unsurmouﬂtable sheoretical OF methodological difﬁcult‘es.Logic and
the foundations of mathematics faced sinilar problems at the peginning
of this century but did not cease 1o thrive; quite the contrary. Hence the
results in (1) are aot at all to he seen 28 negative Of urnthappy conse
quences for grammatica‘l study. They can be interpreted quite positively,
as showing that NLs have 2 grandeut not previousiy recognized.

The NL Nonoonstruct'vity Theorem ShOWs that NLs do not have
generative grammars. This is quite distinct from the claim, which we

i

e

\
\
|
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totally refect, ‘that_ NiLs do not have explicit grammars. This 18 fmpor-
i;ant 10 r'ecogmze in view of the widespread confounding of the notions
generative grammar’ and ‘explicit grammar , & confounding seed in
such remarks as those by Harman in (6) and Chiomsky n (.

(6) Harman (1982: vii):

The term ‘generative’ derives from mathematics, not psycholog It
connotes expliciiness of rules, not 2 psycho‘mgicai process of sentz;xce
production. A generative graminar would therefore be a precise and
explicit gtatement of the rules of grammar of a particular natural
{anguage ke English.

N Chomsky (1965 4y

A grammal of a languags purports to be 2 description of the ideal
speakez-hearer’s intrinsic competence. If the gramimar is, furthermore,
perfecﬂy explicit—W® may (somewhat redundanﬂy) callit a generative
grammar.

Contrary to the implications of such remarks, expliciiness and generative-
ness are distinct aotions. A grammal per se merely states necessary ané
sufficient conditions for nembership in an NL. A generative graminar
is, 48 indicated by Chomsky himself many times, not only an explicit
statement of quch conditions, but 2 procedure for enumerating the
mermbers of an NL, hence 2 1yp® of Turing machine. What the NL Non-
constrctivity Theorem ShoWs, then, is that NLs have no generat'we
grammars; but this says nothing about the possibilit of nongeneraiive
(nonconstructive) grammais of NLs. Only ¢he confounding of the
aotions ‘explicit grammar’ and ‘generative grammar’ could yield the
fllegitimate conclusion that the NL Nonconstmctivity Theorem implies
that NLs do not have grammars.

Moreover, not only are nongenerative grammars & logical possibility,
a substantive proposal for such exists it the literature, the nonCon-
structive conception of grammars in Johnson and Postal (1980) and
Postal (1982). To our knowledge, this is the only extant view of gram-
mar and gsammatical le which survives the NL Nonconstructivity
Theorerm. In this view, each gzammaucal rule is 2 gtatement, 2 formula
1o which truth yalues can be assigned and a grammal is equwalenﬂy
either a set of such ules o1 8 single Togical ¢onjunction of such rules.

33 Philosophical Consequences

The chief philosophical cOnsequence of the preceding discussion
concerns the ontological statts of NLs. As in other areas, One can
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The NL Nonconstructivity Theorem states that no NL has a con-
structive grammar. It might be wondered to just what extent the NL
Vastness Theorem is incompatible with constructivity. In particular,
given the syntactic nature of the data on which the NL Vastness
Theorem is based, one might assume that the result was compatible,
for example, with either or both constructive phonology and/or (inter-
pretive) semantics. But this is not the case. A grammar capable of
characterizing transfinite sentences cannot contain constructive phono-
logical or semantic components. '

The implications of the NL Nonconstructivity Theorem can be
summed up as follows. Since the ideas of generative grammar became
dominant in the late 1950s, linguistics has in general assumed that the
task of grammatical theory involves answering the question: what is
the right form of gemerative graminar for NLs? The many disputes
which have divided linguists over the past quarter century are then
reducible by and large to disputes over claims about ‘right form’. Some
linguists have believed that NL grammars contain transformational
rules; others have denjed this. Some linguists have believed that trans-
formational rules are parochially ordersd: others have denied this.
Some linguists have believed that there are interpretive semantic rules;
others have denied this. And so on. Underlying all such disputes has
been the assumption that it is possible through appeal to some com-
bination of proof-theoretical devices to construct some generative
grammar for each NL. But this assumption is falsified by the NL Non-
constructivity Theorem.

There is another way to characterize the consequences summed up
in (1) and in the NL Nonconstructivity Theorem. The false finiteness
limitation on sentence size determined the claim that NLs fall some-
where in the domain of objects characterizable by what one might
call theoretical computer science. Their grammmars would be some sort
of Turing machine, their sentence aggregaies recursively enumerable
sets. Since NLs are subject to no length law, they do not lie within this
limited class of mathematical objects. While this conclusion may, for
various socio-historical reasons, be displeasing to some, it involves
no unsurmouniable theoretical or methodological difficulties. Logic and
the foundations of mathematics faced similar problems at'the beginning
of this century but did not cease to thrive; quite the contrary. Hence the
results in (1) are not at all to be seen as negative or unhappy conse-
quences for grammatical study. They can be interpreted quite positively,
as showing that NLs have a grandeur not previously recognized.

The NI Nonconstructivity Theorem shows that NLs do not have
generative grammars. This is quite distinct from the claim, which we
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totally reject, "thafc NLs do not have explicit grammars. This is impor-
::ant to recognize in view of the widespread confounding of the notions
generative grammar’ and ‘explicit grammar’, a confounding seen in
such remarks as those by Harman in (6) and Chomsky in (7)

(6) Harman (1982: vif):

The term ‘generative’ derives from mathematics, not psychology. It
connotes explicitness of rules, not a psychological process of sentz;me
production. A generative grammar would therefore be a precise and
explicit statement of the rules of grammar of a particular natural
language like English.

{7y Chomsky (1965: 4):

A grammar of a language purports to be 3 descziption of the ideal
speaker-hearer’s intrinsic competence. If the grammar is, furthermore,
perfectly explicit—we may (somewhat redundantly) call it a generative
grammar.

Coatrary to the implications of such remarks, explicitness and generative-
ness are distinct notions. A grammar per se merely states necessary and
sufficient conditions for membership in an NL. A generative grammar
is, as indicated by Chomsky himself many times, not only an explicit
statement of such conditions, but a procedure for enumerating the
members of an NL, hence a type of Turing machine. What the NI Non-
constructivity Theorem shows, then, is that NLs have no generative
grammars; but this says nothing about the possibility of nongenerative
(nonconstructive) grammars of NLs. Only the confeunding of the
notions ‘explicit grammar’ and ‘generative grammar could yield the
illegitimate conclusion that the NL Nonconstructivity Theorem implies
that NLs do not have grammars.

Moreover, not only are nongenerative grammars & logical possibility,
a substantive proposal for such exists in the literature, the noncon-
structive conception of grammars in Johnson and Postal {1980) and
Postal (1982). To our knowledge, this is the only extant view of gram-
mar and grammatical rule which survives the NL Nonconstructivity
Theorem. In this view, each grammatical rule is a statement, a formula
to which truth values can be assigned and a grammar is equivalenily
either 2 set of such rules or a single logical conjunction of such rules.

3.3 Philosophical Consequences

The chief philosophical consequence of the preceding discussion
concerns the ontological status of NLs. As in other areas, one can
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distinguish fhree basic ontolegical positions potentiaily relevant {0 an
account of NLs: the nominalist position identifies sentences with
physical manifestations and thus cannot countenance the existence
of more sentences than there are, for example, subatomic particles
in the universe; the conceptualist position identifies sentences with
some sort of psychological reality, for example,  mentally instantiated
grammar that generates them and the realist/Platonist position takes
sentences to be abstract objects, whose existence is independent of
both the physical and the psychological realm.

The now standard observation that NLs are not smalier than countably
infinite already drives the nominalist to the extreme view that the
physical universe is infinite. But the proof that NLs are megacoliec-
tions leaves the nominalist devoid of any interpretation for sentsnce-
nood. The conceptualist viewpoint tries 1o adapt to the infinitude
of sentences by postulating an internalized, mentally real, algozithm
{called a generative grammar) for constructing, in principle, each
of the countably infinite number of finite sentences. This position
is already problematic in that it does not assign any clear ontological
status to most sentences, namely, those which are too big to be
mentally constructed or to have actual mental representations. The
question to be faced here is whether the conceptualist position claims
that the latter sentences are real. If they are not real, what is the point
of having a device which characterizes them? And if they are real, how
does their reality differ from that of the realist’s abstract objects? As
far as we can tell, it does not, since these putatively mental objects have
no physical, temporal, or psychological locus. The conclusion
that NLs are megacollections simply worsens the already problematic
status of the conceptualist position, by showing that the number
of sentences lacking any psychological locus is unimaginably vast
and that this collection includes sentences, equal in size to every
¢ransfinite cardinal. For such sentences, the notion of an actual psycho-
logical locus, even under the loosest of idealizations, makes no
sense.

On the other hand, recognition of a fealm of sentences equinumercus
with the realm of sets raises-absolutely no ontological problems not
already implicit in standard set theory, problems which have to be
faced by any, viable ontological position. We conclude, therefore, that
the demonstration that NLs are megacollections lends credibility to the
realist position by showing, in amother domain, the apparently in-
superable prodlems facing any attempt to. identify objects in-the
domain with aspects of the physical or psychological universe.
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