PARALLELIZATION OF
AUGMENTED PHRASE-STRUCTURE
GRAMMARS FOR
NATURAL-LANGUAGE
PROCESSING

D. Terence Langendoen
Clinton Jeffery

Department of Linguistics
The University of Arizona
Tucson, AZ 85721 USA

Version of 4:53 p.m. January 21st, 1990

VERSION OF 4:53 P.M. JANUARY 2I8T, 1990

Abstract

Note: This is the abstract we submitted for the competition. We will have to revise it somewhat.

The theory of augmented phrase-structure grammar (APSG) is widely used in natural-language
processing, both for parsing of natural-language input and generating natural Janguage output by
machine. APSGs consist essentially of context-free phrase-structure productions {or their inverses),
augmented by tests for the applicability of the productions and by actions for constructing internal
representations of the interpretation of the input and potential output. APSGs are capable of
modeling any theory of grammar of natural language currently in use and can be designed to pro-
vide both elegant processing models of particular linguistic theorics and also efficient mechanisms

for parsing, generating and translating natural-language materials.

The most comprehensive implementation of an APGS is the PLNLP English Grammar (PEG),
developed primarily by Karen Jensen of IBM Research. PEG is written in PLNLP, a programming
language designed by George Heidorn of IBM Reearch. Instructions in PLNLP consist of APSG
productions. For the past several years, the senior author has worked with Heidormn and Jensen, for
one year as a Visiting Scientist at IBM T.J. Watson Rescarch Center, and also under contract with
IBM at the City University of New York and the University of Arizona. His work to date has
primarily involved the writing of a “user’s guide” to PLINLP for linguists and developing test models

of various grammatical constructions in English and other natural languages.

In this work, we intend to accomplish two tasks. TFirst, we will determine the possibility of
parallelizing the parsing algorithm in PLNLP, by implementing a compiler for PLNLP using the
IBM 3090 vector facility. Our implementation will use vector instructions to apply in parallcl those
productions in the parser which are candidates for application at each stage of the parse. We expect

thereby to achieve a significant performance improvement over previous PLNLP implementations,

Abstract i

VERSION OF 4:53 P.M. JANUARY 218T, 19940

particulardy for ambiguous input. Second, we will explore the use of the architecture of the IBM
3090 to generate in parallel alternative responses to or analyses of ambiguous natural-language input
(e.g., I need the report on my desk). Given a parser which assigns more than one analysis to such
an input, we will submit the different interpretations to different engines to generate in parallel ap-

propriate responses or analyses in parallel.

Abstract Hi

VERSION OF 4:53 P.M. JANUARY 2IST, 1990

Table of Contents

The Nature of Parsingo i i e e e e e 1
Parsing in PLNLP . . e 1
Some PLNLP Conventionst 2
The Parsing Algorithm in PLNLP e 4
Geometry of the Phrase Structure Grammar ot 9
PSG Rules a8 VeCtOrs . ..ot i e e e e e e e [}
PosItions a5 VEClOrS . . .o ottt it e e e e 11
A Concrete Example e 12
Blaborations ot e e e e e e e e 12
Performance Measurements e e e 13
L0 T LT) 14
L F T 16

Fable of Contents iv

VERSION OF 4:53 P.M. JANUARY 2187, 1990
The Nature of Parsing

Parsing (or decoding) may be defined as the process of determining the structure and interpretation
of textual material, and a parser (or decoder) as the system that carries out the process. Broadly
speaking, parsing may be done in two different ways: from the top down, by breaking up the text
into successively smaller parts, as in traditional sentence diagramming; and from the bottom up,
by combining the elements of the text into successively larger parts. Both approaches are are widely
used in the parsing of computer programs (Aho, Sethi and Ullman 1986). and in the parsing of
natural-language text by machine (Grishman 1986, Allen 1988). Designing parsers for natural-
language text is 2 much harder problem than designing parsers for programming-languape text.
Consequently, most parsers that have been built for natural-language text provide only for a tiny
subpart of the language. A notable exception is the PLNLP Lnglish Grammar (PEG) system,

which is designed to parse ordinary English written text (Jensen 1986, ...).

Parsing in PLNLP

In this paper, we consider the problem of bottom-up parsing of natural-language text from left to
right, making use of the PLNLP programming language (Heidorn 1972, ..). Parsing in PLNLP,
as in many systetns for natural-language processing by machine, makes use of augmented phrase-
structure rules for manipulating records, defined as a collection of attributes, each of which has a
value (boolean, integer, string, pointer to another record, or a list of pointers). Fach such rule an-
alyzes a sequence of records associated with the corresponding sequence of textual segments as a
single record associated with the segment that encompasses that sequence of textual segments. In

PLNLP, the simplest parsing rules are expressed schematically as in Example (1),

(1 SYM, (tests) ... SYM,,(tests) ~» SYM,, , (actions}

In Example (1), SYM, through SYM, refer to the records that are being combined, and SYM,,,
refers to the record that is created for the textual segment made up of the concatenation of the
segments associated with SYM; through SYM,. Each SYM; in Example (1) is itself the value of

the designated attribute SEGTYPE for the corresponding record, and can be thought of as either

VERSION OF 4:53 P.M. JANUARY 21S8T, 1990

a terminal or a nonterminal symbol in an augmented phrase-structure grammar. I is a terminal
symbol if it corresponds to a single character (alphabetic, numeric or other single-character symbol,
such as a punctuation mark) in the input string; otherwise it is a nonterminal symbol. Accompa-
nying each symbol in the left side of the rule is a set (possibly empty) of tests of attribute values for
that record or other records in the rule. The actions that are performed in connection with the re-
cord referred to in the right side of the rule create attribute values for that record. The ability to
perform essentially arbitrary tests and actions in the course of executing a parsing rule of the form
in Example (1} gives the system of augmented phrase structure rules greater generative power than
the class of context-free phrase-structure grammars. For example, the PINLP program in
Figure 1 is capable of parsing all and only all of the strings of the artificial language in Example (2),

which is known not to be a context-free language (Chomsky 1956).

(2) {xx.|x is any nonnull string of letters)

Some PLNLP Conventions

Before we can describe how PLNLP parsing rules apply, we must first explain a few conventions

regarding how PLNLP works.!

1. The designated records SNTBEG and SNTEND are inserted at the very beginning and the
very end of the input. The input must end in one of the designated punctuation marks {. ! 7).
A blank (represented in PLNLP rules as “#”} is inserted before the first character in the input
and before the final punctuation mark. Sequences of two or more blanks in the input are re-
duced to a single blank.

2. Por each alphabetic character in the input, a record is created whose SEGTYPE attribute has
the value "‘LETTER’}? for simplicity, we say that a LETTER record is created in this circum-
stance. Similatly, for each numeric character in the input, a DIGIT record is created; and for

each other nonblank character in the input, a SPECIAL record is created. Each of these re-

I For further details, see (Heidorn 1972, Langendoen 1989).

2 The SEGTYPE attribute is actvally a pointer to a certain kind of record, known as a “named record”,
whose properties are described in 4. on page 4

VERSION OF 4:53 P.M. JANUARY 2IST, 1990

/% XX RULES x/

/% Program for parsing strings of the form XX., where X is any string %/
/% of letters. »/

DECODE :

ROUTINES
« "NLP-TIE™, TOP "NLP-TOP", REST "NLP-REST"

DECODING

/% Create a LEFTSTR segment, made up of initial substrings of tha %/
/% input. Store the sequence of letters that make it up in the xv/

/% LETTERS attribute. %/

(100) # LETTER ~=> LEFTSTRO(LETTERS=LETTER)

(110) LEFTSTR LETTER ~=> LEFTSTR{LETTERS=LETTERS...LETTER)

/% If any input letter matches the first letter in LETTERS of LEFTSTR, %/
/% begin a RIGHTSTR sagment, made up of LEFTSTR plus the input letter. x/
/% Store in its LLETTERS attribute the rest of the LETTERS of LEFTSTR, %/
7% Store in its LETTERS attribute the matching input letter. »/
(120} LEFTSTR LETTER(STR.EQUAL .STR{TOP<LETTERS(LEFTSTR}>})

~=» RIGHTSTR{LLETTERS=REST<LETTERS(LEFTSTR)>), LETTERS=LETTER)

/% Continue to build up RIGHTSTR as long as the input letter matches %/
/% the first letter in its LLETTERS attribute. x/
/% Add the input letter to ils LETTERS attribute, and remove the first %/
/% letter from the LLETTERS attribute. »/
(1301 RIGHTSTR LETTER{(STR.EQUAL.STR{TOP<LLETTERS(RIGHTSTR)>))
w3 RIGHYSTR(LLETTERS=REST<LLETYERS(RIGHTSTR)>),
LETTERS=LETTERS...LETTER)

/% Analyze the final period and the blank preceding it as an instance %/
/% of the segtype PUNC, %/
(166} | -=> PUNC

/% Parsing is successful if the entire input except for the final »/
/% punctuation has been read, and the LLETTERS attribute of RIGHTSTR %/
/% is empty. Create a SENT record, with atiributes identifying its %/
/% laftpart and its rightpart as the same as the LETTERS attribute of x/
/% RIGHTSTR., »/
(150) RIGHTSTR(-LLETTERS) PUNC
~=> SENT(LEFTPRT=LETTERS(RIGHTSTR), RIGHTPRT=LETTERS(RIGHTSTR))

EOF
tEND~OF-FILE:

Figure 1. PLNLP program for parsing the language in Example (2).

cords, as well as the blank record, also has a STR attribute, whose value is the string made up
of that character, and an FW and an LW attribute whose values are respectively the number
of the position immediately preceding the beginning of the segment associated with the record
and the number of the position immediately following the end of the segment associated with
the record.

For each string flanked on each end by a blank and not containing an internal blank, a STEM

record is created, with appropriate STR, FW and LW attribute values.

10.

VERSION OF 4:53 P.M. JANUARY 2187, 1990

Records with particular attributes may be declared in a special “RECORDS” section of the
program. These records automatically receive a NAME attribute, whose value is the string
consisting of the name by which it was declared; such records are called “named records”.
Named records are referred to by putting their names in single quotes.

If a STEM record is created whose STR attribute matches the NAME attribute of a named
record, then another STEM record is created which includes all of the attributes of the named
record. Thus the RECORDS section can be thought of as providing a lexicon or dictionary
for the program, and this convention as providing for lexical lookup.

A PLNLP program can invoke any Lisp/VM function. Certain functions which have been
especially written for PLNLP programming must, however, be declared in a “ROUTINES”
section and given new names. Among the most common of these are NLP-TIE, which is
similar to Lisp/VM APPEND; NLP-TOP, which is similar to Lisp/VM FIRST or CAR; and
NLP-REST, which is similar to Lisp/VM CDR. PLNLP functions can also be written, and
put into a “PROCEDURES” section.

A PLNLP program must begin with the header line “DECODE:”, and end with the two footer
lines “BEOF” and “:END-OF-FILE:".

The body of parsing rules are confained in a section labeled “DECODING”.

If the program also includes text-generating rules, these must appear in a section labeled
“ENCODING”. Generating rules are written like ordinary augmented phrase-structure rules
(i.e., the single symbol appears to the left of the arrow).

A comment line may appear anywhere in a PLNLP program. It is indicated by a slash (/™)

as the last character in the line.

The Parsing Algorithm in PLNLP

The

method of applying parsing rules to the input stream is described in detail in Heidorn (1972:

238ff.). Here we consider its most important aspect, the the parsing algorithm for PLNLP, which

Heidorn {1972: 239) describes as follows:

1.

Get the next character from the input stream and consider it to be a segment of that type (c.g.,

L

an “e” is a segment of type E).

VERSION OF 4:53 P.M. JANUARY Z1ST, 1990

2. Create a rule instance record for each rule for which this segment can be the first constituent,
if there are any such rules, making note of this continuent in each record.

3. Make a copy of each rule instance record for which this segment can be the next constituent, if
there are any such records, making note of this constituent in each new record.

4. Ifthere is a rule instance record which is complete (1.e. has all of its constituents), create a seg-
ment record according to the right side of the associated rule {i.e. apply the rule), erase the rule
instance record, and go to step 2.

3. If the input stream is not empty, go to step 1.

6. [Halt

We show how this algorithm works in the processing of the input abab. by the PLNLP program
in Figure 1 on page 3.3 For simplicity, we represent a rule instance record (RIR) as a list made up
of its number, the number of the rule, a list of the records that have already been processed, and a

list of records remaining to be processed,

Step Action
1 Create a # record, which is associated with the first character in the input stream, by
means of appropriate FW, LW and STR attributes.
2 Search the 6 parsing (decoding) rules for # as the first constituent. Two are found.
Create the following RIRs:
(1 100 (#) (LETTERY)
(2 140 (#) (N
3 Search the RIRs other than the ones just created for # as the next constiteent. This step

is vacuous in this case.

4 Search the 2 RIRs for completeness. None are found.

] Go to step 1.

1 Create A and LETTER records for the next character in the input stream.

2 Search the 6 parsing rules for A, LETTER as first constituent. None are found.

3 Search the 2 RIRs for A, LETTER as next constituent. One is found. Copy and

modify RIR#1.

3 This input is modified to #ababif., where # is the blank symbol, as described in 1. on page 2

e A W

VERSION OF 4:53 P.M. TANUARY 2IST, 1990

(1 100 (# LETTER) NIL)
Search the 3 RIRs for completeness. One is found. Create LEFTSTR record by rule
100. Erase all instances of RIR#1. Go to step 2.
Search the 6 parsing rules for LEFTSTR as first constituent. Two are found. Create
the following RIRs.

(3 110 (LEFTSTR) (LETTER))

(4 120 (LEFTSTR) (LETTER))
Search the I previously created RIR for LEFTSTR as next constituent. None is found.
Search the 3 RIRs for completeness. None are found.
Go to step 1.
Create B, LETTER records for the next character in the input.
Search the 6 parsing rules for B, LETTER as first constituent. None are found.
Search the 3 RIRs for B, LETTER as next constituent. One is found. Copy and
modily RIR#3.4

(3 110 (LEFTSTR LETTER) NIL)
Search the 4 RIRs for completeness. One is found. Create LEFTSTR record by rule
110; erase all instances of RIR#3; go to step 2.
Search the 6 parsing rules for LEFTSTR as first constituent. Create:

(5 110 (LEFTSTR) (LETTER))

(6 120 (LEFTSTR) (LETTER))
Search the 2 previously created RIRs (RIR#2, RIR#4) for LEFTSTR as next constit-
uent, None are found.
Search the 4 RIRs for completeness. None are found.
Create A, LETTER records the the next input character.
Search the 6 parsing rules for A, LETTER as {irst constituent. None are found.
Search the 4 RIRs for A, LETTER as next constituent. Two are found. Copy and
modify RIR#5, RIR#6S5

(5 110 (LEFTSTR LETTER) NIL)

4 Although LETTER is the next constituent in RIR#4, the test associated with the LETTER record in rule
120 is not satisfied. Hence it is not copied.

5 RIR#4 is not copied because its LEFTSTR and LETTER records are not continguous in the input.

VERSION OF 4:53 P.M. JANUARY 21ST, 1990

(6 120 (LEFTSTR LETTER) NIL)
Search the 6 RIRs for completeness. Two are found. Create the records LEFTSTR
by 110 and RIGHTSTR by 120. Erase all instances of RIR#3, RIR#6; 4 in all. Go to
step 2.
Search the 6 parsing rules for LEFTSTR, RIGHTSTR as first constituent. Two
found.® Create the RIRs:

(7 110 (LEFTSTR) (LETTER))

(8 130 (RIGHTSTR) (LETTER))
Search the 2 previously created RIRs for LEFTSTR, RIGHTSTR as next constituent.
None are found.
Search 4 RIRs for completeness. None are found.
Create B, LETTER records for the next input character; create STEM record for the
input string ABAB.
Search the 6 parsing rules for B, LETTER, STEM as first constituent. Nong are found,
Search the 4 RIRs for B, LETTER, STEM as next constituent. Two are found. Copy
and modify RIR#7, RIR#8.

(7 110 (LEFTSTR LETTER) NIL)

(8 130 (RIGHTSTR LETTER) NIL)
Search the 6 RIRs for completeness. Two are found. Create LEFTSTR record by 110;
RIGHTSTR record by 130. Erase all instances of RIR#7, RIR#8, 4 in all. Go to step
2.
Search the 6 parsing rules for LEFTSTR, RIGHTSTR as first constituent. Three
found. Create the RIRs:

(9 110 (LEFTSTR) (LETTER))

(10 130 (RIGHTSTR) (LETTER))

(11 150 (RIGHTSTR) (PUNCY))
Search the 2 previously created RIRs for LEFTSTR, RIGHTSTR as next constituent.
None are found.

Search the 5 RIRs for completeness. None are found.

¢ Rule 150 is not found, since the test associated with the RIGITFSTR segment. is not satisfied at this point.

51

VERSION OF 4:53 P.M. JANUARY 218T, 1990

Create # record for the next input character,
Search the 6 parsing rules for # as first constituent. Two are found. Create:

(12 100 (#) (LETTER))

(13 140 (#) (N
Search the 5 previously created RIRs for # as next constituent. None are found.
Search the 7 RIRs for completeness. None are found.
Create ., SPECIAL records for the next input character.
Search the 6 parsing rules for ., SPECIAL as first constituent. None are found.
Search the 7 RIRs for ., SPECIAL as next constituent. One is found. Copy and modify
RIR#12.

{12 140 (#) NIL)
Search the 8 RIRs for completeness. One is found. Create PUNC record by 140. Erase
all instances of RIR#12. Go to step 2.
Search the 6 parsing rules for PUNC as first constituent. None are found.
Search the 6 RIRs for PUNC as next constituent. One is found. Copy and modify
RIR#11.

(11 150 (RIGHTSTR PUNC) NIL)
Search the 7 RIRs for completeness. One is found. Create SENT record by 150. Erase
all instances of RIR#11.
No action.

Halt.

In Figure 2 on page 9, a simple trace of the parse of this input is provided, leaving out the creation

of the individual character, LETTER and STEM records (i.e., those records that are created by the

system rather than by the parsing rules themselves), and in Figure 3 on page 10, the parse tree for

this input is provided. In parsing this simple input, the set of six decoding rules is searched twenty

times, while the RIRs ate searched twenty-eight times, for an average of four RIRs per search.

VERSION OF 4:53 P.M. JANUARY 218T, 1990

INPUT: HABAB#H.
FW OF CHARACTER: 23465578

FW SPAN RULE

2-3 100: ¥ LETTER -=» LEFTSTR
2-4 1le: LEFTSTR LEVTER -~> LEFTSTR
2 -5 110: LEFTSTR LETTER ~~> LEFTSTR
2-5 1z28: LEFTSTR LETTER ~-> RIGHTSTR
26 110: LEFTSTR LETTER -~> LEFTSTR
2 -6 130: RIGHTSTR LETTER --> RIGHTSTR
7-8 lao: # . --> PUNC
2-8 150: RIGHTSTR PUNC ~=> SENT

Figure 2. Simple trace of parse of the input string “ahab.”

Geometry of the Phrase Structure Grammar

The vectorization of PLNLP’s parsing algorithm revolves around its core: the context-free phrase
structure grammar (PSG). Since PSG’s are widely used in both linguistics and computer science,
our vectorization technigues are applicable to a wide variety of other PSG-based tools. Qur ap-
proach. to vectorization is relevant to phrase structure grammars in general {not just context-free

ones).

As described above, every PSG consists of a set of terminal symbols, a set of nonterminal symbols,
and a set rewrite rules used to parse {or in PLLNLP parlance, decode) a linear sequence of ferminal
symbols into structures of terminal and nonterminal symbols and/or to encode structures of ter-

minals and nonterminals into a linear sequence of terminal symbols.

On a non-vector machine, any nonirivial grammar must be represented in conventional main
memory. The primary cost of the parsing algorithm employed is incurred in accessing main
memory; simple algorithms require more memory accesses to the grammar rules themselves, while

more sophisticated algorithms require more memory accesses for the instruction stream.

When mapping the PSG formalism onto a vector architecture, the chief parameters to be considered
are the number of PSG rules, the maximum and average number of symbols in each rule, the

number of vector registers available on the machine, and the maximum vector size supported by

VERSION OF 4:53 P.M. JANUARY 218T, 1990

SENT
I

pTmm Foom *

| |
RIGHTSTR PUNC

|]
pumm e ——— ’ sty
| ; P I
RIGHTSTR I [
| I | §
g ¥ 2 i I
] I i 11
LEFTSTR } i | |
! I i |1
g, | i 1 i
I i I i | |
LEFTSTR | | I | |
I | | | ||
sy, i | i | |
| i | | ! | |
: LET}'ER LETTER LETTER LETTER | |
| 11
A B A B # .

Figure 3. Parse tree for the input “abab.”

the machine. The number of PSG rules R, together with the maximum number of symbols found
in any rule S, define a matrix of symbols with dimensions R x S. The number of vector registers
V and the width (number of elements) W in each vector register define a matrix of vector register

elements with dimensions V x W,

In representing the grammar within the vector machine, the matrix of symbols may or may not fit
the vector registers, depending not only on the particular matrices defined by graromar and the
machine in question, but also upon the mapping by which the matrix of symbols is stored n the
vector registers and main memory of the machine. Below we present obvious mappings and their
implications as a justification for our algorithm which follows. One might measure the efficacy of
a given mapping by the percentage of symbols held within vector registers or the percentage of
vector register elements utilized. A count of the actual number of main memory accesses required

during the normal execution of the algorithm is a better measure of success.

10

VERSION OF 4:53 P.M. JANUARY 218T, 1990

PSG Rules as Vectors

The simplest mapping would be a one-to-one correspondence between PSG rules and vectors.
Determining whether a rule matches the input string is very simple given such a layout: on the 3090

it can be performed in two vector instructions (details are ommitted):
VCER * compare the grammar rule vector against the input vector
VCZVM * count left zeros in the resulting VMR

Unfortunately, since the number of grammar rules is typically far greater than the number of vector
registers available, the rules must in general be stored in main memory and loaded when needed
by the algorithm. The degree of parallelism achieved by the mapping is limited to average length

of the grammar rules. In the worst case this mapping achieves no parallelism at all.

Positions as Vectors

The obvious alternative is to lay out the rules “sideways”. Placing the first clement of all the rules
in the first vector, and the second element of all rules in the second vector, and so0 on. By counting
the number of symbols in each rule which match a prefix of the input, all the rules can be tested
at once. At each step in the algorithm all the elements in the nth vector are compared to the nth
symbo}l on the input. One vector is dedicated to holding the lengths of the rules; another vector

holds the counts of matching prefixes as the input is examined. The innermost loop contains:
VCER * compare all the rules against the symbol (a scalar)
VAE(Q *add a “1” into the counts of those rules which matched

Although this mapping requires slightly more pre- and post-processing in the algorithm, its central
loop is comparable in complexity to the above. The degree of parallelism achieved by the mapping

is limited by the number of rules in the grammar.

il

VERSION OF 4:53 P.M. JANUARY 21ST, 1990

A Concrete Example

Although PLNLP accepts arbitrary PSG’s, our interest is in maximizing performance for the kinds
of grammars which come up in practice. As an example, IBM’s PEG grammar has approxirnately
200 rules. PEG is nearly in Chomsky Normal Form, which is to say that most rules are binary;
the average rule length is roughly 2.25, and the maximum rule length is 4. The IBM 3090 processor
has 16 vector registers of up to 512 elements each. IBM's vector facility supports vectors of es-
sentially arbitrary length using auxiliary index registers. On the other hand, the sixteen vector reg-

isters available impose a very specific structure on the organization of the optimal solution.

In the PEG example above, mapping each rule to a vector (and hence, a vector register) would re-
sult in roughly 0.5% register utilization. Only 8% of the rules could be held in the registers at one
{ime; rules would general have to be lpaded from main memory at each step of the input. The
number of vector comparisons required at each step would be 200. At best, the vector implemen-

tation would run twice as fast as the scalar implementation.

Mapping each position to a vector, on the other hand, allows the entire PEG grammar to fit neatly
within the 3090’s vector registers. Only five vector comparisons are required at each stage of the
input, four to count matching prefixes and one to check the counts against the length of the rules.
Note that this technique not only improves performance in terms of memory access {as expected
by the improved register utilization) but also reduces the number of instructions performed in
comparisons. This latter result is a direct consequence of the increased parallelism employed in the

mapping.

Elaborations

Although the PEG example motivates our selection of positions as vectors, it is highly dependent
on the grammar submitted to PLNLP. Having dismissed mapping rules to vectors, we must now
address the question of how to handle very long rules. For grammars whose longest rule is longer

than twelve symbols, the entire grammar does not fit into the vector registers.

12

VERSION OF 4:53 P.M. JANUARY 218T, 1990

If most of the rules in the grammar are too large to fit the vector registers, it may be efficient to treat
positions beyond the twelfth as vectors to be loaded and matched the same as the initial positions.
If only a few rules have too many symbols it may be more efficient to adopt a mixed scalar/vector
implementation. Allowing a vector register to hold the input and vector registers to hold the
maiching prefix counts and lengths for each rule as described above, the remaining vector registers
can hold the first twelve symbols in each rule. This is enough to determine exact matches for rules
with twelve symbols or less, and it is also enough to rule out longer rules where one of the first
twelve rules does not match the input. Between these two cases, almost the entire match can be

done purely in registers; the remainder can be done by a very few scalar operations.

Performance Measurements

Figure N compares our vectorizing PLNLP compiler against two alternatives: an implementation
of PLNLP used internally by IBM, as well as our own compiler emitting scalar instructions instead
of vector instructions. The purpose of the comparison against scalar version of our own compiler
is to precisely isolate the effect of the vector facility upon parsing complexity. The purpose of
comparison against the IBM implementation is to show the benefits to be had by switching to a
modern compiler technology; our compiler emils code for IBM’s C/370 product instead of the

VM/LISP product.

Note that our compiler is considerably more portable ‘than the previous implementation; the scalar
code it generates is compatible with ANSI standard C and runs on machines as small as the IBM
PC. Another significant improvement our compiler provides to the development process is im-
proved compile-time; benchmarks compiling the same large grammar used to evaluate the per-

formance of the parsing algorithm are provided in figure N+ 1.

i3

FERSION OF 4:53 P.M. JANUARY 2187, 1990

Conclusions

The degree of parallelization achieved by a vectorized implementation of a phrase structure gram-

mar parser is dependent on both the grammar and the mapping of that grammar to machine vee-

fors,

Conclusions 14

References

Aho, AV, R. Sethi and J.D. Ullman. 1986, Grishman, R, 1986. Computational Linguistics.
Compilers: Principles, Techniques, and Tools. New York: Cambridge University Press.

Reading, MA: Addison-Wesley. Heidorn, G. 1972. Natural Language Inputs to

a Sirudation Programming Spstem. Monterey,
Allen, J. 1988. Natural Language CA: Naval Postgraduate School.

tanding. , CA: Benjamin. ,
Understanding. Menlo Park, CA: Benjamin Jensen, K. 1986, PEG 1986, Unpublished

Chomsky, N. 1956, Three models for the paper.

description of language. [RE Transactions on Langendoen, DD.T. 1989, A4 Linguist's
Information Theory IT-2:3, 113-124. Introduction to PLNLP. Unpublished ms.

