
Chapter 6

AN OWL-DL IMPLEMENTATION OF GOLD

An Ontology for the Semantic Web

Scott Farrar∗ and D. Terence Langendoen∗∗

∗Department of Linguistics
University of Washington

∗∗Division of Information & Intelligent Systems
National Science Foundation∗

Abstract An OWL-DL implementation of the General Ontology for Linguistic De-
scription (GOLD) is presented with relevant examples of axioms given
throughout. As background, an introduction to Description Logic is
presented using examples from linguistics and with particular attention
to SHOIN (D), the logic which most closely relates to OWL-DL. The
types of axioms used to develop an ontology in OWL-DL are explained.
In addition, a domain independent methodology is given for creating
description-logic based ontologies of any kind, not just those for linguis-
tics. Using the SHOIN (D) notation, the methodology is demonstrated
for the linguistics domain with particular attention given to illustrating
the use of each type of axiom. Finally, the relevant issues and limitations
to linguistic modeling in OWL-DL are discussed.
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Introduction

The General Ontology for Linguistic Description (GOLD) is an onto-
logical theory for the domain of linguistics. Motivations for an ontolog-
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ical theory for linguistics, including GOLD, have been given elsewhere
(e.g. Farrar and Langendoen, 2003 and Farrar, 2007). Minimally, an on-
tological theory specifies the entities of interest in a given domain. Those
entities include classes and their instances along with the relations that
hold among those instances. Lightweight ontologies stop there, by pro-
viding an enumeration of the classes and a limited number of relations,
usually enough to arrange the classes in a taxonomy. A more comprehen-
sive ontology—some do not refer to light-weight ontologies as ontologies
at all—places many more restrictions on the entities in the domain and
can serve to facilitate automated reasoning. The logical sentences used
to make explicit assertions about the base entities are referred to as ax-

ioms. That axioms play a crucial role in the design of formal ontologies
is well known in the knowledge engineering literature (Niles and Pease,
2001, Masolo et al., 2003, among others).

The goal of the current work, then, is to demonstrate how to axioma-
tize one such ontology, GOLD.1 The point of the current chapter is not
only to present a particular aspect of an ontology for linguistics, but also
to explore the limitations of OWL-DL (Smith et al., 2004) with respect
to ontological modeling of the linguistics domain. This chapter could
be written for any particular domain of inquiry, not just linguistics, to
which an ontological theory is applied. However, it is the hope that this
chapter, through its use of linguistic examples, will be particularly rele-
vant for linguists who are interested in modeling one aspect of language
or another.

As background for this task, Section 1 includes an introduction to
knowledge engineering and ontologies. This section details the class of
logical formalisms known as description logic (DL) that has led to
the creation of OWL-DL (Horrocks et al., 2003). Included is a discus-
sion of the standard notation for generic DLs and an in-depth look at
SHOIN (D), the description logic which most closely relates to the fi-
nal OWL-DL implementation. The use of DL notation in this chapter is
justified for reasons of brevity, as the XML syntax for OWL-DL is too
verbose to present in running text. In addition, a step-by-step method-
ology for creating an ontological theory is given in Section 2. Next in
Section 3, the methodology for ontology creation is demonstrated using
SHOIN (D) axioms. Finally in Section 4, the limitation to ontological
modeling in OWL-DL are presented with a discussion on why OWL-DL
is a suitable modeling language for certain reasoning tasks.



1. Background

In order to understand how GOLD is to be axiomatized, this section
presents the relevant background. After a brief introduction to know-
ledge engineering and ontologies, we give a detailed discussion of the
main formalism to be used throughout the paper, namely that of de-
scription logic. After an introduction to description logic in general, we
give an overview of SHOIN (D), the description logic which most closely
resembles that of OWL-DL. We then present a methodology whereby a
knowledge base can be instantiated by using a description logic.

1.1 Knowledge engineering and ontologies

Knowledge engineering is the task of representing the knowledge
of a particular domain in a machine readable format. For a particular
knowledge engineering task, the formal language used to represent the
knowledge often has far-reaching effects as to what kinds of domain
knowledge can be captured by the representation. Furthermore, the
product of knowledge engineering, the knowledge base, can be used in
conjunction with automated reasoning tools to produce new knowledge,
to prove the consistency of existing knowledge, and to enhance search
within the knowledge base. The central assumptions in a knowledge
base are captured in the ontological theory, or the set of statements
that make up the essential knowledge of the domain, in other words, the
knowledge that must always hold if the theory is to be coherent. We
refer to such sets of statements as simply the ontology.

The statements included in the ontology hold according to a particular
conceptualization of the domain. A conceptualization is an abstract,
simplified view of the world (Gruber, 1993). Due to the complexity of
any real-world domain, a conceptualization is necessarily a simplified ap-
proximation of reality. Still, that the conceptualization is approximate
does not preclude it from being useful. A major issue in the modeling of
the linguistics domain is that various linguistic theories adopt different
and often incompatible conceptualizations. In fact, from the standpoint
of the ontologist, the aim of science may be cast as the search for the
ideal conceptualization. But admittedly, what is meant by “ideal” can
vary according to the task at hand. For our task, achieving interoperabil-
ity over a broad spectrum of language descriptions, we require only that
our conceptualization be rich enough to account for differences in vari-
ous linguistic descriptions. The nature of this task relaxes some of the
requirements on the ontological theory. An ontology for all of linguistics
is, at this point, unachievable and would require deep consensus as to
how language is conceptualized. Still, we will undoubtedly come across



descriptions that are incompatible with one another due to different the-
oretical assumptions, in other words, disparate conceptualizations.

1.2 Description logic

The task of ontology building requires the use of logic as a means
of axiomatization. First-order logic (FOL), for instance, is one well
understood language for this task and is often employed, in one form
or another, for this purpose; see the ontologies of SUMO (Niles and
Pease, 2001) and DOLCE (Masolo et al., 2003). An alternative to FOL
in the design of knowledge-based systems is the class of logics known
collectively as Description Logics (DLs) (Baader et al., 2003). A DL
is a less expressive, but highly structured fragment of first-order logic.
Using a DL buys improved computational tractability but at the cost of
expressivity. This means that algorithms for working with DLs will be
fast, but that expressing certain concepts in a DL might not be possible.
This section gives an introduction to this class of logics by discussing
some of the key properties of DLs illustrated by examples in typical DL
notation. Furthermore, we limit our discussion here to the linguistics
domain.

1.2.1 Basic notions and terminology. A description logic
is a formal logic in the strict sense. That is, it has a formal syntax
which specifies how to construct well-formed sentences and a formal
semantics which relates those sentences to a model. A description logic,
as with all formal logics, has an associated proof theory, or a system
of how certain entailments follow from a set of sentences. The focus of
this section is mainly on the syntactic operations of description logic,
but supplemented with an informal discussion of semantics. For a full
account of the semantics of description logic, see Baader et al., 2003.

Whereas the predicates in FOL have equal ontological status, those
in a DL come in two sorts: concepts and roles. Concepts in a DL
correspond to unary predicates, while DL roles are used in place of bi-
nary predicates. What are referred to as constants in a first-order logic
are referred to as individuals in DL. Intuitively a concept represents a
category or kind in the domain being modeled. A concept is a universal
notion and can be instantiated by individuals. The relation of instan-

tiation holds between concepts and individuals, making an individual
an instance of some concept (Nardi and Brachman, 2003). Individuals
are disjoint from concepts and cannot be instantiated or related by the
subsumption relation. A role is a binary relation between individuals.
Description logic by definition has only binary relations and, thus, rela-
tions of higher arity (e.g. ternary relations) are disallowed. The terms



concept and role show that the origins of description logic lie in the
early work on knowledge representation, particularly on frame-based

languages (Baader et al., 2003). In such languages, information is gath-
ered together into structures called frames (structured objects), each
particular type of which admits a specified set of possible attributes
related by slots (roles).

The terms concept, individual, and role are particular to the body of
literature concerning description logics. More general works in ontology
and knowledge engineering use class, instance, and (binary) predicate,
instead of the DL-specific terms. In the language of OWL-DL, property
is—confusingly—used in place of binary relation. Though the current
work is meant to guide the reader in constructing OWL ontologies, we
use DL terminology throughout, mainly for the sake of consistency since
logical formulas are given in DL notation.

Within a description logic system, concepts and roles are separated
from individuals by partitioning the knowledge base into a TBox

(short for terminology box ) and an ABox (short for assertion box, in
the sense that assertions are made about a given terminology.). The
TBox consists of axioms about the domain in general in the form of
logical sentences, while the ABox consists of facts about individuals. A
description logic knowledge base KB may be defined minimally as the
tuple consisting of a TBox T and an ABox A, i.e. KB = 〈T, A〉, where
T is the union of the set of concepts with the set of roles in the domain,
and A is the set of individuals in the domain; furthermore, the TBox also
contains axioms relating to concepts and roles, while the ABox contains
axioms relating to individuals.

Description logic can be used to represent much more than just basic
concepts and individuals. Complex, non-atomic concepts can be speci-
fied through logical statements. Statements in a DL differ considerably
from those in standard FOL. Moreover, statements in a DL are expressed
at the level of predicates, i.e., there are no variables. Thus, axiom (1)
gives an expression in a DL.

InflectedUnit ≡ GrammarUnit ⊓ ∃ hasConstituent.InflectionalUnit (1)

This can be glossed as: “The class InflectedUnit is defined as the in-
tersection of the class of GrammarUnit and any class having at least one
hasConstituent role whose value is restricted to the class InflectionalUnit.”
(See Section 3.1.2 for a further explanation of this axiom.) Statements
in a description logic are therefore formulas containing predicates, tech-
nically with one free-variable, but omitted in the syntax. Predicates in a
DL represent concepts and roles. Concepts are either atomic, i.e. those
identified by name and may or may not be defined,2 or complex, i.e.



those derived from atomic concepts using a set of constructors. The
supported concept and role constructors in a particular DL determine
its expressive power (Horrocks et al., 2003, p. 6). Thus, the constructors
are used to derive well-formed formulas. In the following we have listed
some examples of very common constructors in DLs with notes about
their respective semantics and how they could be used in an ontology
for linguistics. Furthermore, these constructors and others are used to
create right-hand side expressions that define anonymous concepts. Any
of the expressions below could be placed with a named concept on the
left and related with either ≡ or ⊑ (see Section 1.2.2 for definition of
these symbols).

conjunction (⊓):

AfricanLanguage ⊓ EndangeredLanguage (2)

Expression (2) can be glossed as “those individuals which are shared
between the concepts AfricanLanguage and EndangeredLanguage”. Con-
junction is interpreted as the intersection of sets of individuals.

disjunction (⊔):

TenseFeature ⊔ AspectFeature (3)

Expression (3) can be glossed as “the individuals that either belong to
the concept TenseFeature or AspectFeature”. Disjunction is interpreted
as union of sets of individuals.

negation (¬):

¬PhonologicalUnit (4)

Expression (4) can be glossed as “the set of all individuals that are not
instances of PhonologicalUnit”. Negation is interpreted as the comple-
ment of a set of individuals with respect to the universal set of the
domain.

existential quantifier (∃):

∃ hasPart.GrammarUnit (5)

Expression (5) can be glossed as “the set of individuals each of which
has some member of GrammarUnit as its part.” The expression does not
limit things other than members of GrammarUnit from being parts. The



fact that other entities could be members of GrammarUnit is because of
the open-world assumption built into the DL, namely that the domain is
not assumed to be complete unless explicitly stated. To make the above
description of quantification clear, the following serves to compare a
simple DL formula (6) with the equivalent in standard FOL (7).

∃R.C (6)

{x|∃y R(x, y) ∧ C(y)} (7)

universal quantification (∀):

∀ hasFeature.MorphosyntacticFeature (8)

Expression (8) can be glossed as “the set of individuals whose features
are only individuals of MorphosyntacticFeature”. Universal quantification
restricts all roles of some concept to be value-restricted by concepts of a
certain type. Universal quantification does not ensure that there will be
a role that satisfies the condition, but if there are such roles, their ranges
have to be restricted to the given type. Again, the following serves to
compare a simple DL formula (9) with the equivalent in standard FOL
(10).

∀R.C (9)

{x|∀y R(x, y) → C(y)} (10)

1.2.2 Beyond the basics. With a brief introduction to de-
scription logic out of the way, we now focus on a variety of description
logic that is the most useful in constructing an ontology using OWL-DL,
namely a description logic called SHOIN (D). First off, SHOIN (D) is
a notational variant of the OWL-DL language and is derived from a fam-
ily of description logics referred to as the SHOIN (D) family. As in the
naming of other DLs, the expressive power of SHOIN (D) is reflected
in its name. For example, the S is due to the family’s relationship to
the modal logic S4 (Horrocks et al., 1999). The other components of
the name are be described as follows: H means that role hierarchies
are included; O means that individuals are included; I means that in-
verse roles are allowed; N means that number restrictions are allowed;



and (D) means the optional inclusion of concrete data types. In order
to encode knowledge in SHOIN (D), and eventually in OWL-DL, an
understanding of the allowed constructors for SHOIN (D) is necessary.
These, along with the corresponding OWL-DL constructors, are listed
in Table (6.1).3

Constructor SHOIN (D) OWL-DL

conjunction C1 ⊓ C2 unionOf(C1, C2)
disjunction C1 ⊔ C2 intersectionOf(C1, C2)
negation ¬C1 complementOf(C)
oneOf {o1, ..., on} oneOf(o1,...,on)
exists restriction ∃R.C someValuesFrom(C); onProperty(R)
value restriction ∀R.C allValuesFrom(C); onProperty(R)
atleast restriction > nR minCardinality(n); onProperty(R)
atmost restriction 6 nR maxCardinality(n); onProperty(R)
datatype exists ∃R.D someValuesFrom(D); onProperty(R)
datatype value ∀R.D allValuesFrom(D); onProperty(R)
datatype atleast > nR minCardinality(n); onProperty(R)
datatype atmost 6 nR maxCardinality(n); onProperty(R)
datatype oneOf {v1, ..., vn} oneOf(v1,...,vn)

Table 6.1. A comparison of SHOIN (D) and OWL-DL constructors.

An in-depth analysis of OWL-DL in relation to other description logics
is given by Horrocks et al., 2003. Also, Horridge et al., 2004 is a the very
helpful and practical guide to building OWL ontologies in the Protégé
environment.

The basic constructors of a DL such as SHOIN (D) can be used on
the right side of either the ⊑ or ≡ symbol to create logical statements
of various kinds (see below). The resulting logical statements are the
axioms of a DL. A DL axiom may be defined as some restriction on
a concept or role. It is an assertion of knowledge using the entities in
the ontology; that is, an axiom holds a priori of any knowledge that is
later generated using the ontology, at least in a monotonic knowledge
system. Which kinds of axioms to include in an ontology is, of course, a
major focus of ontological engineering. Axioms in a DL knowledge-based
system can be classified according to what objects they describe (TBox
or ABox entities) and according to whether or not they are definitional
(necessary and sufficient). Based on these criteria, a taxonomy of the
various sorts of DL axioms is given in Figure 6.1, and the remainder of
this section explores each sort in turn.

Terminological axioms make statements about entities in the TBox,
i.e., concepts and roles, not individuals. Terminological axioms for a



Terminological (TBox) axioms

– inclusions (necessary)

∗ concept inclusions

∗ specializations

– equalities (necessary and sufficient)

∗ concept equations

∗ concept definitions

Assertional (ABox) axioms

– concept assertions

– role assertions

Figure 6.1. A taxonomy of DL axioms sorts.

given concept can be classified as either necessary or as necessary and
sufficient conditions to be included in that concept. Terminological ax-
ioms that give the necessary conditions for some concept to be included
(subclassed) in another are called inclusion axioms. There are two
types of inclusions.

The first type of inclusion is simply a concept inclusion. A concept
inclusion has the abstract form C ⊑ D. A concept inclusion states a
necessary, but not sufficient, condition for membership in some concept.
It can be read as “having property D is necessary for a TBox entity
to be included in concept C, but this condition alone is not sufficient
to conclude that the object is in concept C”. Both C and D can be
arbitrary concept expressions. An example of this kind of axiom is given
in (11).

Head ⊓ Verb ⊑ MainVerb (11)

The second type of inclusion axiom is a specialization, which has the
abstract form A ⊑ C. This is very similar to that of the inclusion axioms,
but specializations are different from concept inclusions because the left-
hand side of a specialization must be atomic (hence A). The abstract
form can be read as “having properties of concept C is necessary for an
entity in order to be included in concept A”. Axiom (12) is an example
of a specialization.

SemanticUnit ⊑ Abstract (12)

A specialization axiom is useful when some concept cannot be defined
completely (Baader and Nutt, 2003, p. 58). Both sorts of inclusion



axioms in a TBox can be viewed as a limited kind of logical implication
(Nardi and Brachman, 2003, p. 18). Concept inclusion axioms are very
important in the structure of the knowledge base as they are used to
generate a taxonomy from a set of assertions in a TBox.

Another type of terminological axiom, those concerning concepts and
roles, are equalities. A concept equation has the general form of C ≡ D

as in (13):

ContentBearingPhysical ≡ ∃ expresses.LinguisticSign (13)

This axiom simply states that a ContentBearingPhysical is defined as
anything that realizes a LinguisticSign. A special kind of equation is a
concept definition of the form A ≡ C where the left-hand side is an
atomic concept. A concept definition states the necessary and sufficient
conditions that must hold in order for a TBox entity to be included in
some other concept. Having property C is necessary and sufficient for a
TBox entity to be included in concept A. Axiom (14) is an example of
a concept definition:

Language ≡ SpokenLanguage ⊔ WrittenLanguage ⊔ SignLanguage (14)

This can be glossed as “a language is either spoken, written, or signed;
there is no other type of language”. Axiom (14) is furthermore a cover-

ing axiom, as it guarantees that Language will only have 3 subclasses.
Furthermore, a concept definition has the effect of introducing a sym-
bolic name for some constructed concept into the TBox (Baader and
Nutt, 2003, p. 55).

Finally, axioms that pertain only to individuals are called assertional

axioms, hence the label ABox. Assertions can either pertain to concepts
or roles. A concept assertion is of the form C(I), where C is some concept
from the TBox and I is an individual. C(I) means that I is an instance
of C. A linguistic example would be (15):4

Noun(Noun123) (15)

A role assertion is of the form R(A, B), where R is some role from the
TBox and A and B are individuals. R(A, B) means that B is a filler of A

for role R. An example of an assertional axiom is given in 16.

precedes(Noun123, Verb456) (16)



2. Methodology

The development of a knowledge base, including an ontology, is es-
sentially a two-stage process. Figure 6.2 lists these steps specifically for
a knowledge base for linguistics that incorporates GOLD as well as lin-
guistic data. The following enumeration is in part adapted from Borgida
and Brachman, 2003, p.379. The methodology given here supersedes an
earlier version given in Farrar, 2007. The steps in the methodology are
discussed in detail in the next section.

1 Design the TBox for the knowledge base.

(a) Classify entities as concept, role, or individual.

(b) Add concepts to TBox.

i Declare atomic concepts.

ii Define non-atomic (constructed) concepts.

iii Create concept taxonomy.

iv Partition the concept taxonomy.

(c) Add roles to TBox.

i Declare transitive and symmetric roles.

ii Declare inverse roles.

iii Declare functional roles.

iv Add domain and range restrictions to roles.

v Add cardinality restrictions to roles.

(d) Add other axioms to further refine concepts and roles.

2 Populate the ABox with individuals.

(a) Enumerate and classify each individual according to available concepts.

(b) Relate individuals via available roles in ontology.

3 Relate TBox and ABox.

(a) Create enumerated concepts.

(b) Relate individuals to concepts via roles.

Figure 6.2. The steps in creating a knowledge base in DL.

3. Linguistic modeling in OWL-DL

In this section we discuss the steps in creating a DL knowledge base for
the descriptive linguistics domain. We use DL notation as introduced
in Section 1.2, though the ultimate aim of this section is to act as a
guide to creating such a knowledge base in OWL-DL. At issue are the
specific kinds of axioms needed to express a wide variety of linguistic



knowledge found in the domain. The structure of the current section
mirrors the steps in methodology for creating a DL knowledge base listed
in Figure 6.2.

3.1 Design the TBox for the knowledge base

This step includes developing the basic structure of the ontology. The
most important task in creating any ontology is to properly enumerate
the entities found in the domain. If the inventory is ad hoc or incomplete,
then the resulting ontology will not be an accurate conceptualization.
The key is to establish a rigid foundation such that later additions will
not create problems for the overall theory. We refer to such a founda-
tion as the upper ontology. For descriptive linguistics such an upper
ontology contains the fundamental knowledge of structure, form, and
meaning, that which is usually possessed by a well trained linguist. This,
ideally, would include general knowledge that applies to any language or
theoretical framework. Examples of general knowledge of this sort are
given below:

A verb is a part of speech.

A verb can assign case.

Gender can be semantically grounded.

Linguistic expressions realize morphemes.

This kind of knowledge is typical of that represented in an ontology in
knowledge based systems. The ontology provides the means of formaliz-
ing such expressions and defining them in a larger conceptual framework.
For example, it provides the means of specifying how a spoken linguistic
expression is related to the printed form of a writing system, or how
Tense is defined in terms of a temporal calculus.

Of the most fundamental entities that occur in the linguistics domain
are the linguistic expressions themselves. The basic entities here are
orthographic expressions, spoken expressions, and signed expressions.
Other than such concepts that are physical in nature, those occupy-
ing time and space, there are the abstract concepts such as the units
of grammatical structure, and meaning. As presented in Farrar, 2007,
these three types of entities are unified under the concept of Sign via
a set of relations. From these three fundamental types, the basic units
of linguistic analysis can be derived, including concepts such as Glyph,
Phoneme, SyntacticCategory, SemanticUnit, etc.

Next, there are the entities that relate the fundamental units to one
another. For instance, two expressions can be related via precedence in



time and/or space, but also via dominance relations as in grammatical
structure. The mereology of such units is a necessary component in the
ontology, that is, how units are composed of other units. Consider the
example of sound structure. There are the basic phonological entities,
in general, PhonologicalUnit, including the concept of Phoneme. Larger
phonological units include the PhonologicalWord. Parts of the phonolog-
ical unit include the Mora. Each level of linguistic analysis with have its
own unit types, relations, and theory, in short, its own mereology.

Next, there are more specific entities that may be considered as part of
the overall upper ontology, for instance, the various features associated
with the fundamental units. Features can be phonological, morphosyn-
tactic, syntactic or semantic: MorphosyntacticFeature, SyntacticFeature,
PhonologicalFeature, and SemanticFeature. Depending on the level of
granularity, the various kinds of features may be divided into subgroups.
For instance, TenseFeature and NumberFeature are both kinds of
MorphosyntacticFeature.

Finally, there are the various structuring devices used in linguis-
tic analysis. In general, we refer to these as linguistic data types.
There are several fundamental types, including Lexicon, GlossedText,
PhonologicalParadigm, FeatureStructure, StructuralDescription, etc. Each
of these data types has its own mereology, e.g. FeatureStructure which
is the pairing of a feature name and a feature value.

3.1.1 Classify entities as concept, role, or individual. As
discussed in Section 1.2.1, a concept in DL represents a category or kind
in the domain being modeled. A concept is a universal notion and can
be instantiated by individuals. Concepts in a DL, then, are classes of
individuals. The binary relations that hold among various individuals
are known as roles. The next crucial task in creating the ontology is to
decide to which sort each entity in the domain belongs.

In any DL , the most basic distinction is between concepts and roles.
Such a decision is perhaps the most intuitive of all modeling decision.
This is reflected in how entities are named. That is, it often possible to
simply assign entities to either concept or role based on whether they
are named using nouns or verbs respectively, at least in English. For
instance, consider the notion feature and the relating of a feature to
its value. We may refer to feature simply as Feature, a noun in En-
glish and hence a concept. We may refer its having a value as hasValue,
as in the DL literature, in which there is a strong tendency to name
roles using the word has combined with the concept that acts as the
range, thus, hasValue, hasPart, hasHead, etc. There are of course prob-
lematic cases pertaining to the distinction between concepts and roles.



Consider the example where a verb is said to assign case. On the one
hand, one could posit the role of assignsCase and include Verb as the
domain of the role. On the other hand, one could use the concept of
CaseAssigner, say that pertained to verbs, determiners, etc. to create
the complex concept of CaseAssigningVerb. On the one hand “things”
have an unchanging essence. A stone is a still a stone even when it is
used as a doorstop or a weapon. On the other hand, roles that things
play can change depending on the context. At one moment, John may
student of guitar, while at another, he may be a professor of philoso-
phy. In a DL system, it is preferable to limit the number of concepts
when possible by using roles that help to extend concepts to form others.
For instance, we may enumerate several atomic syntactic categories, e.g.
Noun, Verb, Determiner, and then use the role assignsCase to compose
complex concepts when needed, such as CaseAssigningVerb, a particular
type of case assigner that happens to be a verb. It would be even simpler
and more advantageous in a DL to simply use the role assigns. In this
way, one could enumerate various categories such as Case, Gender, and
Number and use assigns to derive concepts such as GenderAssigningNoun

and CaseAssigningVerb.
Next, there is the issue of whether an entity is a concept or an individ-

ual. In some cases, the distinction is quite clear. Consider the notions of
Germanic versus standard German. Since we know that there is more
than one type of Germanic language, we can feel assured that Germanic

is a concept. Likewise, since we know that there is usually only one vari-
ety referred to as standard German, we might propose HochDeutsch

as that individual, that is, an instance of Germanic, as in (17):

Germanic(HochDeutsch) (17)

Problems arise when the domain is conceptualized differently, for in-
stance, when entities such as Germanic are treated as individuals, for in-
stance, when reasoning about specific groups of languages is needed. As
shown in (18), one could introduce the concept of LanguageFamily such
that its instances included the individuals such as Germanic, Tibetan,
Bantu, etc.

LanguageFamily(Germanic), LanguageFamily(Tibetan), . . . (18)

How then does the individual HochDeutsch relate to individual
Germanic? Statement (17) is no longer allowed. In OWL-DL it is not
possible for a concept to be both a class and an instance. One solution
to the problem is to introduce another type of role, for instance inFamily,



such that LanguageFamily is a concept with Germanic as an instance,
and HochDeutsch relates to German via the inFamily role, summed
up in axioms (19–21):

LanguageFamily(Germanic) (19)

LanguageVariety(HochDeutsch) (20)

inFamily(HochDeutsch, Germanic) (21)

This solution favors the treatment of Germanic as an individual. Note
that with this particular conceptualization, there is no need for the con-
cept GermanicLanguage as a subclass of LanguageVariety. Germanic takes
its place. Our treatment easily allows for competing classifications of
languages since different ABoxes (corresponding to different classifica-
tion schemes) could be developed from the same TBox (corresponding
to the non-controversial knowledge of the field, namely that there are
families and varieties, with no specific classification implied).

3.1.2 Add concepts to TBox. Once entities have been clas-
sified as concepts, they can now be added to the TBox. There are
(potentially) two kinds of concepts and each is treated differently. First,
there are concepts that are assumed to exist in the absence of any defi-
nitional axioms. These are known as atomic concepts and are entered
into the TBox using unique names. Next, there may be concepts that
are defined in terms of other concepts, referred to as non-atomic. For
instance, (22) shows an example of a defined concept.

InflectedUnit ≡ GrammarUnit ⊓ ∃ hasConstituent.InflectionalUnit (22)

Thus, an inflected unit is defined in terms of grammar unit and inflec-
tional unit. Specifically, the axiom states that it is not possible for some
individual to be an inflected unit with having some inflectional unit as
one of its constituents.

With the entities enumerated and classified as one of the three DL
sorts, it is now possible to add structure to the ontology by classifying
them according to the subsumption relation. Recall that subsumption
is a built-in partial-ordering relation—it is reflexive, transitive and anti-
symmetric—and is used to form concept and role taxonomies. In a DL,
subsumption is a type of inclusion axiom in the form of A ⊑ B, where



A is subsumed by B. The crucial point at this step is not to misin-
terpret the intended meaning of subsumption. One common mistake
is to interpret subsumption as the part-whole relation. For instance,
consider the various phonological concepts: PhonologicalWord, Syllable,
Foot and Mora. These can be related via the part-whole relation to form
a mereology, such that a Foot is part of a PhonologicalWord, a Syllable

is part of a Foot (of course by transitivity, a Syllable is also part of a
PhonologicalWord), and a Mora is part of a Syllable (or more precisely a
part of a Coda, which is part of a Syllable). It would be a mistake to
use subsumption in this manner. Instead, there is some concept, call
it PhonologicalUnit, that subsumes all the aforementioned phonological
concepts:

PhonologicalWord ⊑ PhonologicalUnit (23)

Syllable ⊑ PhonologicalUnit (24)

Foot ⊑ PhonologicalUnit (25)

Mora ⊑ PhonologicalUnit (26)

The mistake arises from the fact that ‘is part of’, like ‘is subsumed by’,
is a partial ordering, but is not reducible to it. Every PhonologicalWord

has parts, each of which is a MetricalFoot, as expressed in (27).

PhonologicalWord ⊑ ∃ hasPart.MetricalFoot (27)

This is distinct from saying that PhonologicalWord subsumes MetricalFoot.
If every MetricalFoot is a PhonologicalWord, then it is correct to say
that PhonologicalWord subsumes MetricalFoot, but that is very differ-
ent from saying that every PhonologicalWord is made up of at least one
MetricalFoot.

Partition the concept taxonomy. The next step is to create
partitions in the concept taxonomy. A partition ensures that two or
more concepts never share individuals; such concepts are referred to
as disjoint. If A and B are disjoint, then A ⊓ B ≡ ⊥ must be true.
In other words, the set formed by the intersection of two or more dis-
joint concepts will always be empty. Partitioning the domain is one
way to speed up certain reasoning tasks, since in a DL concepts are
assumed to overlap unless stated otherwise. As a linguistic example,
consider the case of WrittenExpression versus SpokenExpression versus



SignedExpression. These three concepts may never share individuals since
a given linguistic expression can never exist in more than one physical
form at the same time. The spoken word “dog”, the written word dog,
and the sign for dog are all different entities. The three forms may be
related in a regular way—the word dog definitely relates to its spoken
counterpart—but no conceptualization allows for more than one simul-
taneous mode of being such as this. Thus, axioms (28–30) are necessary
to handle the linguistic example:

SpokenExpression ⊓ WrittenExpression ≡ ⊥ (28)

SpokenExpression ⊓ SignedExpression ≡ ⊥ (29)

SignedExpression ⊓ WrittenExpression ≡ ⊥ (30)

And finally, to ensure that there can be no other kind of Expression, we
include the covering axiom (31):

Expression ≡ SpokenExpression ⊔ WrittenExpression ⊔ SignedExpression

(31)

3.1.3 Add roles to TBox. The next step is to add roles to
the TBox. At this step, there are several issues to be addressed in order
to properly characterize a role. First, roles in a DL can be classified as
transitive. An example of a transitive role from the linguistics domain is
the hasConstituent, holding among syntactic units. If A has constituent
B and B has constituent C, then A also has constituent C.

It is also possible to declare roles as symmetric, as in translationOf

since if A is a translation of B, presumably B is a translation of A. Like-
wise, many lexical relations are also symmetric: antonymOf, synonymOf,
etc. The relation of agreement, denoted by agrees, is another example
of a symmetric relation. An example of a role that is neither transitive
nor symmetric would be the hasValue role that relates a feature to its
value.

With a number of roles in place, the inverses of roles should now
be declared. Inverse roles simply serve to express the opposite rela-
tion between two individuals. For instance, consider the relationship
between two forms, one with inflection and one without. The role
inflectedForm could be used to relate the base form to the inflected form,



while baseForm could be used for the inverse. There is no need to state
further axioms for the inverse, since inflectedForm is already defined.
Other examples include linear ordering relations in morphology such as
follows and precedes.

It is possible to add domain and range restrictions to roles thereby
restricting a given role to taking particular concepts as its domain and
particular concepts as its range. Axiom (32), for instance, limits the
range of hasHead to only individuals of type SyntacticWord.

⊤ ⊑ ∀ hasHead.SyntacticWord (32)

Note the use of ⊤. This symbol means that for anything in the knowledge
base, the range of hasHead must be filled with a SyntacticWord. However,
leaving the domain and range values open is often advantageous. Con-
sider the part-whole relations with respect to morphosyntactic structure.
It would be useful to have a single relation hasConstituent that could hold
between any complex structure and its constituent. We might want this
relation to pertain to both syntactic units and morphological units. If
we declared strict domain and range constraints then we would need a
different relation in each case, something like hasMorphConstituent and
hasSynConstituent. But by leaving the domain and range constraints
open, we can get by with using hasConstituent. Other axioms such as
(33) may be added to constrain its use:

Phrase ⊑ ∃ hasConstituent.SyntacticWord (33)

Cardinality restrictions place restrictions on the number of particu-
lar kinds of relationships a concept may participate in. For instance,
language endangerment could be defined (albeit simplistically) as any
language that has no more than 2,000 speakers.

EndangeredLanguage ≡ Language⊓ 6 2000 hasSpeaker (34)

Roles may also be arranged into a taxonomy to add structure to the
TBox. This is useful when there are several roles, for example, that
share the same range. Consider the various kinds of syntactic roles that
hold between constituents and the main clause: hasPredicate, hasSubject,
hasObject, etc. We might say that there is a single role, say syntacticRole,
that subsumes all of these:

hasPredicate ⊑ syntacticRole (35)



hasSubject ⊑ syntacticRole (36)

hasObject ⊑ syntacticRole (37)

The result of adding the above axioms is a role taxonomy, must like the
concept taxonomy discussed earlier. In practice, role taxonomies will
not be as detailed as those for concepts.

3.1.4 Add other axioms to further refine concepts and roles.

The next step is to establish role restrictions on concepts, that is, to
assert how individuals of particular concepts are related via roles. Such
relations can be asserted using either the existential or the universal role
restriction. An example using the existential is that any morphosyntac-
tic feature must have at least one value that is a morphosyntactic value.

MorphosyntacticFeature ⊑ ∃ hasValue.MorphosyntacticValue (38)

In order to ensure that some feature does not have any other type as its
value, then the right-hand side of (38) must be augmented as in (39):

MorphosyntacticFeature ⊑ . . . ⊓ ∀ hasValue.MorphosyntacticValue (39)

Thus, (39) combines the existential with the universal to achieve a tighter
restriction and can be glossed as “a morphosyntactic feature must have
at least one morphosyntactic value as its value (the existential) and
only morphosyntactic values can be related to morphosyntactic feature
via the hasValue role (the universal)”. If the universal were used by
itself, then it would be possible for a feature not to have a value. The
existential-universal combination, then, is a common design pattern used
in ontology engineering with OWL-DL (Horridge et al., 2004).

The part-whole relationship has already been introduced with refer-
ence to mereology. Part-whole relationships apply in a straight-forward
manner to phonological and morphosyntactic structure. For instance,
constituency structure can be spelled out by using axioms such as (40):

SyntacticPhrase ⊑ ∃ hasContituent.SyntacticWord (40)

This axiom states simply that syntactic phrases must have at least one
syntactic word as a constituent.



3.2 Populate the ABox with individuals

The next step is to instantiate the various concepts and thereby pop-
ulate the knowledge base, in fact the ABox, with individuals. This step
includes enumerating the individuals, sorting them, and finally asserting
knowledge about each individual.

3.2.1 Enumerate and classify each individual according to

available concepts. This step concerns adding concrete data to
the schema knowledge contained in the knowledge base. An obvious
example is to add all the known language varieties to the concept of
LanguageVariety. A single statement such as (41) is required for each
introduction and classification of an individual.

LanguageVariety(OldEnglish) (41)

The task of determining exactly what are the language varieties that
exists is of course contentious. In general, the TBox should contain
universal (or widely accepted) knowledge, while the ABox should be
dedicated to that which may be contested. In general, the TBox/ABox
separation represents the split between general linguistic knowledge and
that pertaining to individual languages, the latter of which is usually
more contested. For example, although the fact that Hopi has an
ImperfectiveAspect and that English and Greek both have a PastTense

constitute linguistic knowledge (perhaps widely held, general knowledge),
this kind of knowledge can be differentiated, as it only pertains to spe-
cific languages and, thus, is better placed in the ABox as individuals.
The drawback is that this would lead to an explosion in the number
of individuals required for even an ontology that included a relatively
small number of languages: HopiPastTense, EnglishPastTense,
GreekPastTense, . . .

3.2.2 Relate individuals via available roles in ontology.

With the axiomatization in the TBox in place, it is a relatively straight-
forward procedure to assert knowledge about individuals, for instance
to relate each individual language to the country where it is spoken:

spokenIn(Mandarin, China) (42)

spokenIn(Mandarin, Canada) (43)



3.3 Relate TBox and ABox

The final step in the methodology is to relate the TBox to the ABox by
introducing mixed axioms that contain all three logical sorts: concepts,
roles and individuals. Mixed axioms can be formed in a number of
ways, for instance by relating a concept with the enumerated set of its
individuals or by relating specific individuals to concepts using roles.

3.3.1 Create enumerated concepts. Enumerating a con-
cepts individuals is useful when there is a need to tie a concept abso-
lutely to a specific set of individuals, meaning that the set is not likely to
change. For instance, when enumerating the values of some morphosyn-
tactic system for a given language and these values are well-agreed upon,
an enumerated concept could be used as follows:

TenseSystem ≡ {DistantPast, HodiernalPast, Present} (44)

This axiom fully defines TenseSystem by stating its necessary and suffi-
cient conditions, namely, an enumeration of its individuals. Put another
way, TenseSystem is equivalent to the set of the three given individuals.

3.3.2 Relate individuals to concepts via roles. Finally, it
is possible to use an individual to place a narrow restriction on a given
class. Assuming that the individual Null represents the absence of
phonetic material, a linguistic expression with no phonetic component,
a zero morpheme could be defined as any morpheme that is expressed
by the null element.

ZeroMorpheme ≡ ∃ expressedBy.{Null} ⊓ Morpheme (45)

Secondly, individuals can be defined by relating them to concepts via
roles.

{Verb123} ⊑ ∃ hasSyntRole.Agent (46)

The above axiom states that the specific verb VERB123 must have an
agent as one of its syntactic roles.

4. Limitations and tool-related issues

4.1 The fundamental types

The first issue to be discussed is whether or not the fundamental pred-
icate types—concepts (classes), roles (properties), and individuals—are
adequate for linguistic modeling.5 For concepts, there is little difference



between a language such as OWL-DL and first-order ontology modeling
languages like SUO-KIF. Concepts within an OWL-DL taxonomy be-
have in the expected way, structured by the partial-ordering relation of
subclassOf, the most common built-in relation among concepts in OWL-
DL. This causes little issue and even multiple inheritance is allowed.
When a concept is subsumed by two or more other concepts, then all
of the individuals of the subsumed concept are members of each parent
concept. But what does it mean to be a member of a concept?

OWL-DL interprets an individual as being a member of a particular
concept. Here, concepts are interpreted as sets. Set theory is a power-
ful modeling device used extensively in mathematics and formal concept
analysis. In basic set theory, the fundamental notions of union, intersec-
tion, and subset play a key role. Furthermore, the mathematical notion
of set membership should not be confused with instantiation. Gangemi
et al., 2001 use the following example to illustrate the difference between
set membership and instantiation. Consider two possible interpretations
of “Socrates is a man”:

1 Socrates belongs to the class of all human beings;

2 Socrates exhibits the property of being a man;

Then:

“Usually, in mathematics, the two views are assumed to be equivalent,
and a predicate is taken as coinciding with the set of entities that satisfy
it. This view is however too simplistic, since in Tarskian semantics set
membership is taken as a basis to decide the truth value of property
instantiation, so the former notion is independent from the latter. The
existence of a mapping between the two relations does not justify their
identification: one thing is a set, another thing is a property common
to the elements of a set.” (Gangemi et al., 2001, p. 3)

As noted, a concept may simply be declared, be defined using other
concepts and constructors, or be defined by an enumeration of its mem-
bers. It is worth mentioning that the last method is not found, for
example, in SUO-KIF.

Turning to individuals, these are, as expected, instantiations of con-
cepts and can be used in ABox and mixed axioms, much in the same way
as in FOL ontologies. The main difference is the presence of the TBox
and ABox which places concepts and individuals in separate parts of the
knowledge base. It would seem that individuals are not really a part of
the ontology. In general, however, it should be noted that ontologies may
include not only concepts and relations, but also individuals. Therefore,
in the design of a knowledge base, its ontology will, technically speak-
ing, contain statements of the TBox and of the ABox variety. Some



description logic literature uses the term ontology to refer only to the
TBox itself. In the modeling of linguistics, individuals such as German

or Swahili are undeniably part of the ontological landscape. To sum
up, even though description logics refer to the TBox as the ontology, the
ontology of a given domain can and should include individuals as well.

Turning to the last DL sort, roles, it is clear that OWL-DL places
the restriction on its relations in that only binary relations are allowed.
Thus, it is impossible to express a fact summarized as, “feature F carries
value V in feature system S,” in a ternary predicate such as:

carries(F, V, S) (47)

Instead, one possibility would be to say that the feature has some value
and that the pairing of a the feature with the value belongs to a feature
system. Thus, it is the pairing itself, the predication, that is included
in the feature system. However, it is not possible to predicate over
relations using binary roles. A statement cannot itself be related to
another entity via a role relation. This is not surprising considering that
OWL-DL is a subset of FOL which itself does not permit such reification
of predications. Otherwise, it would not be “first order”. The closest
that one could hope in a DL account of such a statement would be to
include axioms summarized as “feature F has value V and that F is
related to system S.

hasValue(F, V) (48)

inSpec(F, S) (49)

This issue is that pairings of features and values cannot be related within
feature systems, at least not directly. Such statements about which
features can bear which values are crucial, however, to many linguistic
theories and should be dealt with.

Before leaving the discussion of the three basic sorts, it should be
noted that roles can be grouped into hierarchies. In practical ontology
building, such hierarchies are of little use and may only complicate the
modeling process.

4.2 Justification for using OWL-DL

OWL is actually a family of languages: OWL-Lite, OWL-DL, and
OWL-Full. OWL-DL is a compromise of expressive power and tractabil-
ity. The expressive power of OWL-Lite is low, e.g. it does not include
the possibility of using quantification, and is not adequate for the com-
plexities of a knowledge-based system for linguistics. On the other hand



OWL-Full is known to be undecidable and not practical for currently
available reasoning systems, in part due to the possibility of predicating
over concepts, not just individuals. This means that OWL-DL is com-
patible with a number of inferencing engines, including the RACER (
Haarslev and Möller, 2001) or Pellet (Sirin et al., 2007) reasoning sys-
tem. In fact, “OWL-DL was carefully crafted to remain decidable” just
for that purpose: implementation (Horrocks et al., 2003, p. 18).

In addition, due to the recent interest in description logic formalisms
triggered by their intended application within the Semantic Web, there
are now an increasing number of authoring and other related utilities
available. One very popular ontology editor and visualization tool is
Protégé (Noy et al., 2001, Knublauch et al., 2004).6 Protégé is particu-
larly useful as it has the ability to create and store ontologies in various
formats, including OWL, DAML+OIL, UML, and other XML-based for-
mats. Although not initially intended as a reasoner front-end, Protégé
now comes packaged with the FaCT++ and Pellet reasoners. The most
important function of these reasoners is that of consistency checking.

Finally, OWL now has a number of different serialization formats,
including XML/RDF, OWL/XML, OWL Functionaly Syntax, and the
Manchester OWL Syntax. These serializations are endowed with a fixed
set of data types inherited from XML Schema and RDF (Smith et al.,
2004). Especially in the context of creating an infrastructure for linked
linguistic data Berners-Lee, 2006, XML/RDF syntax of OWL conforms
to best-practice recommendations for data portability (Bird and Simons,
2003). That is, the XML/RDF version of OWL is good candidate for
interoperability, at least in terms of the format, with linguistic data also
in XML/RDF.

Notes

1. All references to GOLD are based on the version found at http://www.linguistics-
ontology.org/.

2. Concepts that are never defined are referred to as primitive concepts.

3. In the table D is assumed to be a built-in data type and not a declared concept.

4. As a convention, individuals are given in small-caps and sometimes with an arbitrary
number, e.g. Noun123.

5. Recall the OWL-DL terminology for concept and role, given here in parenthesis.

6. The latest version of the Protégé tool is available for free at http://protege.stanford.edu/.
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