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Some familiar modals in English

Auxiliary verbs: must, might, can...
Adverbs: necessarily, certainly, perhaps, 
possibly, ...
Adjectives: certain (as in It is certain that...), 
required, permitted, able (to) ...
Quantifiers: all, each, some, one
• These quantifiers are familiar, but perhaps not 

as modals.
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Interdefinability of modals

Modals come in pairs, and are generally 
interdefinable using negation.
• necessary = not possible not; possible = not 

necessary not
• required = not permitted not; permitted = not 

required not
• all = not some not; some = not all not
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Entailments among modals

necessary possible
required permitted
all some
• Label the ‘stronger’ one □ (called ‘box’)
• Label the ‘weaker’ one ◊ (called ‘diamond’)
□ ◊
• In the examples below, I use initial Greek letters α, β, ... 

for □ modals and final Greek letters ..., ψ, ω for ◊
modals. They’re also paired, α with ω, etc.
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Fundamentals of □
□ is a unary operator that preserves entailment (or 
implication): If s1, ... sn t, then □s1, ,,, □sn □t, 
for all s1, ... sn, t. A consequence is the 
equivalence DAB (for “distribution of and with 
box”): 

DAB. □s&□t ≡ □s&t for all s, t
□ fails to preserve entailment when entailment is 
reversed (in the ‘dual’). One consequence is NOB 
(for “nondistribution of or with box ”):

NOB. There are s, t such that □(s|t) □s|□t fails.
• To establish NOB, it often works to pick t = ¬s.
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Fundamentals of ◊

◊ is a unary operator that does not preserve 
entailment.
• There are s, t and u such that if s, t u, then ◊s, ◊t
◊u fails. One consequence is NAD (for “nondistribution
of and with diamond”):

NAD. ◊s&◊t ◊(s&t) fails for some s, t.
◊ preserves entailment in the dual. One 
consequence is the equivalence in DOD (for 
“distribution of or with diamond”):

DOD. ◊(s|t) ◊s|◊t for all s, t.
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Modals and possible world 
semantics

The logical properties of modals are usually 
analyzed in terms of possible world semantics.
• For example, ‘s is necessary’ in a world if and only if s is 

true in all worlds accessible to that world (according to a 
particular accessibility relation). 

I’ll show you another (I hope) simpler way. The 
next slide shows a toy example of logical 
necessity and possibility. 
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Logical necessity and possibility

T=αT=ωx for x in {T, p, ¬p}

p ¬p

⊥=ω⊥=αx x in {⊥, ¬p, p}
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How to interpret the diagrams

The arcs represent the entailment relation 
between two nodes, upward for the structure 
under discussion, downward for the dual. 
Reflexive arcs and arcs derivable from the 
transitivity of entailment are omitted.
The ovals enclose a maximally consistent 
set of □-prefixed elements. In many of these 
diagrams, there is more than one such set, 
but only one is marked.
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Epistemic necessity and possibility

T=βT=ψT=ψp

p=βp ¬p=ψ¬p

⊥=ψ⊥=β⊥=β¬p
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Not all epistemic operators are 
modal, some are pseudomodal

β and ψ are defined as in Table 1. By changing the mappings to 
Table 2, the resulting epistemic operators Β and Ψ no longer 
satisfy NOB and NAD; both preserve entailment in the original 
and dual structures. Therefore they are not modal operators, 
and I refer to them as pseudomodal operators.

Table 1 Table 2

β ψ
T T T
p p T

¬p ⊥ ¬p
⊥ ⊥ ⊥

Β Ψ
T T T
p T T

¬p ⊥ ⊥
⊥ ⊥ ⊥
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An epistemic modal structure 
with 10 members

T=υT=εT

υp υ¬p 

p εp|ε¬p υp&υ¬p ¬p 

εp ε¬p 

⊥=ε⊥=υ⊥
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A deontic structure with 10 members
(δ = required, φ = permitted)

T=φT=δT

φp φ¬p 

p ¬pδp|δ¬p φp&φ¬p 

δp δ¬p 

⊥=δ⊥=φ⊥
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An abilitative structure with 8 
members (η =unable not, ρ = able)

T=ρT=ηT

ρp ¬p=ρ¬p 

p|η¬p ρp&¬p

p=ηp η¬p 

⊥=η⊥=ρ⊥
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An epistemic structure with 8 
members (negation of p is not ¬p!)

T=πT=θT

πp π¬p 

ηp|η¬p πp&π¬p 

p=ηp ¬p=η¬p 

⊥=η⊥=π⊥

10 Nov 2008
Modals, pseudomodals & 

quasimodals 16

An isomorphic quantificational 
structure (P a 1-place predicate)

T

∃p ∃¬p 

∀P|∀¬P ∃p&∃¬p

P=∀P ¬P=∀¬P 

⊥
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Full quantificational structure with 1 
predicate and 2 entities

T

∃P Pa|¬Pb ¬Pa|Pb ∃¬P

Pa&¬Pb ¬Pa&Pb

Pa Pb ∃P&∃¬P ∀P|∀¬P ¬Pb ¬Pa

∀¬P∀P

⊥
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Another epistemic structure

T=γT=χT

p|q=χp|q p|r=γp|r q|r=γq|r

p=χ(p) q=χ(q) r=γr

⊥=χ⊥=γ⊥



Modals, pseudomodals and quasimodals 10 Nov 2008

Terry Langendoen 4

10 Nov 2008
Modals, pseudomodals & 

quasimodals 19

What sort of operators are ζ and σ?

T=ζT=σT=σp|q=σp|r

p|q=ζp|q p|r=ζp|r q|r=σq|r

p=σp q=σq r=σr

⊥=σ⊥=ζ⊥=ζq|r=ζp=ζq=ζr
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ζ isn’t modal so its dual σ is not the 
dual of a modal

ζ fails to preserve entailment in the structure 
diagrammed in the preceding slide.
• p|q, p|r p, but ζp|q, ζp|r ζp fails, because ζp|q = p|q, 
ζp|r = p|r and ζp = ⊥.

• Thus DAB fails, since (ζp|q)&(ζp|r) = p ζ((p|q)&(p|r)) = 
⊥ fails.

ζ and σ are interdefinable using negation, i.e. σ ≡
¬ζ¬ and ζ ≡ ¬σ¬, so that σ, being the dual of ζ, 
fails to preserve implication in the dual structure.
• Thus DOD fails, since σ((p|q)|(p|r)) (σp|q)|(σp|r) fails.
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ζ and σ are similar to modals and their 
duals, so I call them quasimodals
Because ζ and σ fail both DAB and DOD, 
they satisfy both NOB and NAD, so have 
those properties in common with □ and ◊.
Also like □ and ◊, ζ and σ preserve one 
premise entailments in the original 
structure. 
• Let ⌂ represents a quasimodal. Then:

if s t, then ⌂s ⌂t for all s, t.

10 Nov 2008
Modals, pseudomodals & 

quasimodals 22

Some quasimodals in English
Quasimodals are found in English, for example the 
adjective likely and its dual not unlikely. Both likely 
and unlikely fail DAB and DOD, thereby satisfying 
NOB and NAD, illustrated here for likely
(represented as L) only.
• Failure of DAB = satisfaction of NAD: 

Ls&Lt L(s&t) fails for some s, t.
• Failure of DOD = satisfaction of NOB: 

L(s|t) Ls|Lt fails for some s, t.
• Also likely preserves one-premise entailments:

If s t then Ls Lt
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A larger quantifier structure

Consider a quantificational structure with two 
atomic one-place predicates P and Q and four 
entities a, b, c, d over which they range.
Such a structure is too large to diagram, but we 
can easily reason about quantifiers defined within 
it. In particular we can define two quasimodal 
quantifiers, which are interdefinable duals:
• ∀-1 ‘for all but at most one’
• ∃2 ‘for at least two’
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∀-1 and ∃2 fail DAB thereby 
satisfying NAD

• Let P hold for a, b, c, but not d, and Q hold for 
a, b, d, but not c.

Then ∀-1P&∀-1Q ∀-1(P&Q) fails, failing 
DAB but satisfying NAD.
• Let P hold for a, b but not c, d, and Q hold for b, 

c, but not a, d.
Then ∃2P&∃2Q ∃2(P&Q) fails, failing 
DAB but satisfying NAD.
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∀-1 and ∃2 fail DOD thereby 
satisfying NOB

• Let P hold for a but not b, c, d, and Q hold for b
but not a, c, d.

Then ∃2(P|Q) ∃2P|∃2Q fails, failing DOD 
but satisfying NOB.
• Let P hold for a, b but not c, d, and Q hold for b, 

c, but not a, d (as in the second case on the 
previous slide).

Then ∀-1(P|Q) ∀-1P|∀-1Q fails, failing 
DOD but satisfying NOB.
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Hierarchy of numerical quantifiers

The quasimodal ∀-1 can be called a quasi-
universal quantifier, and its dual ∃2 a quasi-
existential one. These are but the first in a series 
of numerical quantifiers, which can be arranged in 
an entailment hierarchy (modal and dual modal in 
orange, quasimodals in turquoise):
∀ ∀-1 ...∀-n ∃n+1 ... ∃2 ∃
If the number of entities in the domain is 2n+1, 
then ∀-n ≡ ∃n+1, and so is self-dual. 
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Most and many/much are also 
quasimodal duals

Most is a quasi-universal quasimodal that 
expresses ∀-φ ‘for all but few/little’. Its 
quasi-existential dual ∃μ many/much
expresses ‘for many/much’.
• In addition, a few/a little paraphrases not most, 

and few/little paraphrases not many/not much.
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All but finitely many and infinitely 
many are pseudomodals, not 

quasimodals
All but finitely many (expressing ∀-<∞) and 
infinitely many (expressing ∃∞), are dual 
quantifiers, the first universal and the 
second existential, that are pseudomodals, 
not modals or quasimodals. Both satisfy 
both DAB and DOD and so preserve 
entailment in both the original and dual 
structures.
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Full quantifier entailment hierarchy

Here is the full quantifier entailment hierarchy 
(modal and dual modal in orange, quasimodals in 
turquoise, and pseudomodals in lavender):

∀-φ ∀-<∞ ∃∞ ∃μ
∀ ∀-1 ... ∀-n ∃n+1 ... ∃2 ∃
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Postscript: In this quantificational structure 
with 1 predicate and 3 entities, ∃2 = ∀-1 is a 

pseudomodal, not a quasimodal!
T

∃P ∃2P|∀¬P ∀P|∃2¬P ∃¬P

∃2!P ∃!P

∃2P
= ∀-1P

∃!P|∃!¬P ∀P|∀¬P ∃2¬P 
= ∀-1¬P
∀¬P∀P

⊥
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