DRAFT OF 2010-03-14 -- DO NOT CITE OR QUOTE 1

The calculus of strings
D. Terence Langendoen

University of Arizona

War On String May Be Unwinnable, Says Cat General
Headline in The Onion 2005-07-27, http://www.theonion.com/content/node/37503

Abstract goes here.

1. String and sequence implication structures
This paper formalizes and applies the notion of the calculus, or logic, of strings
described in Ferré 2007: 112.

The string datatype can be seen as a logic, where formulas are sets of strings ...,
the deduction relation ... is based on ... string containment ..., and disjunction ...
computes the maximal substrings shared by 2 strings.

This formalization uses Koslow's (1992) notion of an implication structure | = <S, =>, in
which S is a set and k is an implication relation (Ferré's deduction relation) over S.

When S is a set of strings, i.e. a formal language, and & is the substring relation (Ferré's
string containment), | may be called a string implication structure (SIS) with the property
thatforall s, t € S, s =tif and only if t is a substring of s (equivalently, s is a superstring
of t). More generally, = satisfies the condition (1).

1. Forall s, ...sn, te S:sq, ... spetifand only if tis a substring of a minimal

superstring r over s, ... Sn."

The various logical operators are defined for an SIS in the manner of Koslow 1992, as
follows. The disjunction, or product, s vtof s, t € S is the least string u € S such that for

allveS,ifsevandteyv,thenukv. Thatis, uis the least upper bound, or maximal
substring, of the disjuncts s, t.2 The conjunction, or sum, s At of s, t € S is the least

string u € S such thatu = s and u =t. That is, u is the greatest lower bound, or minimal
superstring, of the conjuncts s, t.3 The negation s of s is the implicationally weakest

' A minimal superstring r over s, ... sn has each of s, ... sn as a substring, and any other candidate string
has some r as a substring. It is not required that r belong to S or that it be unique.

’The singular 'substring’ is used here, in contrast to Ferré's use of the plural 'substrings'’; that is, as in
standard logic, disjunction is construed here as a logical function (or operator) on strings yielding at most
a single value, whereas Ferré construes it as a possibly multi-valued relation.

3 N-ary products and sums (e.g. s+ V ... Vs, and s1 A ... A s,) are defined similarly. Throughout this paper,

the terms 'product’ and 'sum’ refer to the results (values) of disjunction and conjunction respectively,
'disjunction’ and 'conjunction' to the operators themselves, and 'disjunct' and 'conjunct' to the arguments

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 2

string t that together with s entails every string in S. The conditional s — tof sand tis
the implicationally weakest string that together with s entails t.* In addition, modal
operators of various sorts are definable for an SIS.

A set T € S is a sublanguage of S if and only if whenever s4, ... sh € T and s1, ... sp F t,
t € T. On the other hand, if s1, ... sp =tand some s;¢ T (1 <i < n), then t may or not be a

member of T. That is, = preserves sublanguage in the way that ordinary entailment
preserves truth in propositional logic. S is, by definition, a sublanguage of itself. The
finite sublanguages of S (in addition to S, if S is finite) include, for all s € S, the sets Ts

of all substrings of s. If Ts = {s, €} if € € S (where ¢ is the empty string) and Ts = {s}
otherwise, then s is an atomic string in S, and Ts is an atomic sublanguage. Figure 1
shows a relationship between overlapping sublanguages T, and T, in a SIS <S, >,
where the arcs read upwards indicate the entailment relation.

\/\Q/\/
\/\/

Figure 1. Sublanguages T, (light gray) and T, (medium gray) that overlap (dark gray)

Xs = Ts U Us is a chain sublanguage based on a sublanguage T, where Us = {s = So, S1,
., Si-1, Si, ...} € S whose members jointly satisfy the conditions in (2). These conditions

insure that s; is the least upper bound of the pair si-1, s;, i.e. that s; = si-1 A sj, and that

there is no other t € S such that s; = si-1 A t. Figure 2, in which the arcs read leftward

indicate entailment in | = <S, >, shows a hypothetical chain sublanguage Xs = Ts U Us
in which Ts = {s, t, u}.
2. Forallsie Us(i>0):
a. Sj=Sji1— S
b. SiE S

c. Forallte S, iftsatisfies (2.a) and (2.b), thent = s;.

If S is infinite, then it contains at least one infinite chain sublanguage, unless only finitely
many members of S bear the substring relation to one another. If s is atomic in S, then
Xs is an atomic chain sublanguage.

of the respective operators. The terms 'product' and 'sum' for the results of disjunction and conjunction
are taken from the calculus of individuals of Leonard and Goodman (1938), which the calculus of strings
greatly resembles.

* These operator definitions are all subject to the proviso 'if it exists'; that is the operators may be partial
functions on S or not be defined on it at all.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 3

t \
/

u

S=So ————— ... Si Sj+1

Figure 2. Hypothetical chain sublanguage X,

A weaker type of implication structure for a set of strings is a sequence implication
structure (QIS) | = <S, o>, where S is a set of strings and ~q is the subsequence (or

interruptible substring) relation with the property that for all s, t€ S, s =g tif and only if t
is subsequence of s, either continuous (i.e. a substring) or discontinuous; that is, either
skEat,or t=ri...rm(m>1)and s = qorQ1...rmgm such that g, ... gm-1 are non-null and

Qo...qm € S.° More generally, =q satisfies the condition in (3).
3. Forallss, ...sn, te Siisq, ... sn=qtifand only if tis a subsequence of a minimal

superstring r over s, ... Sqn.

The various logical operators and the notion of sublanguage are defined for a QIS in the
same manner as for an SIS.

2. The calculus of regular languages
This section considers SISs and to a lesser extent QISs in which S is a regular

language, beginning with infinite regular languages.

2.1. The calculus of infinite regular languages

In I+ = <S4, &>, S1 is the regular language a*b* = {a™b™ m, n =0} = {¢, a, b, aa = a2, ab,
bb = b?, a3, a?b, ab?, b*, a*, a®b, a2b?, ab?, b*, ...}.° In I+, alb* = aPb® if and only if p < j and
q < k, so that a%b = ab but a2b # ab2.” Since the minimal superstring r over any pair of
strings a%", alb® is a™@ @ Ipmax(h k) 49" Ak = aPbd if and only if p < max(g, j) and q <

max(h, k), so that a%b, ab? k a?b?, but ab, ab? ¥ ab?®.

Disjunction and conjunction are total functions on S1. The product of any pair of
disjuncts a%", alb* is a%" v alb* = aM"@ IpMn(. k) and the sum of any such pair of

conjuncts is a%b" A alb* a™*(@)pmax(h k) Three types of products and sums may be
distinguished. First, ifg, k>0and h=j=0,orifh,j>0and g=k =0 (i.e. ifone is a

® It is not required that the individual strings r; gj belong to S, but only that their respective concatenations
do; cf. Langendoen 2002 for discussion of the 'strict subsequence' relation, which does require the
individual strings to belong to S.

® | use the more prolix set notation for regular expressions throughout this paper for consistency with set
notation not involving regular expressions. € represents the empty string.

! Every entailment in l1q = <S1, Eq> is also valid in |1 = <S4, £>, i.e. |1 and liq are equivalent structures.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 4

member of Xia and the other of X1p) the disjuncts and conjuncts (for the remainder of
this paragraph, juncts) are disjoint. Their product is €, and their sum may be called a
disjoint sum. For example, a?b? = a? A b? is a disjoint sum. Second, if g =j or h = k, one

of the juncts is contained in the other, so that the product or sum is identical to one of its
juncts, and the product may be called a contained product, and the sum a contained

sum. For example, a?b = a%b v a?b? is a contained product; and a%b? = a’b A a%b?is a
contained sum. Otherwise, the juncts partly overlap, and the product may be called an
overlapping product, and the sum an overlapping sum. For example, ab = a?b v ab? is

an overlapping product; and in ab? = a?b A ab?is an overlapping sum.

The conditional, likewise, is a total function on Si1. The conditional of a%b" as antecedent
and alb* as consequent is a’b?, where p =jifj>gand p =0 otherwise, and g =k ifk > h
and q = 0 otherwise. For example, a> - ab =b, ab — a?=a?*and ab — a = €. On the

other hand, negation is undefined in S+ since for any string s € S4, there is no string

te Sq, suchthats, t=uforallueS:.8

Modal operators can also be defined for I+, such as the box (necessity) modal [Ja™b" =
a™b" A a"b™ = MM MpMaX(M. M) 5n4 jts counterpart diamond (possibility) modal >a™b" =
a™p" v a"b™ = gMin(m: Mpmin(m.) 9 E£qr example [Jab? = a2b?, Gab? = ab, G>[Jab? = a2b?

and [J<ab? = ab, and in general (0s s = <s and $Os E [Os forall s € Sa.

Figure 3 diagrams the top part of |4; its arcs, when understood as pointing upward, show

all the one-premise non-reflexive entailments among the strings of S1 of length < 4 and
some for those of length 4.

® This observation about negation holds for any SIS in which S is infinite, but not for its dual; see note 10.
Oisa necessity modal in |1, since forall s, t e S1, (s At) © Os A Otand Os v Ot = (s v t), but there
are s, te Sisuch that O(s v t) ¥ Os v [Ot, e.g. a%b, ab?, since [(ab? v a?b) = [Jab = ab, whereas

Oab? v Ja%b = a%b? v a?b? = a?b?, and ab & a?b? is a possibility modal in I+, since for all s, t € Sy,
OsVOte O(svit)and O (s At) =Os A O, but there are s, t € Sqsuch that Os A Ot O(s A t), e.g.

a%b, ab?, since &ab? A $a?b = ab A ab = ab, whereas $(ab? A a?b) = $&a?b? = a?b?, and ab « a?b?.
However [J and <> are not interdefinable using negation in the usual way since negation is undefined in I.

Both [0 and <> map S1 onto the context-free language Ss = {@"b": n = 0} ¢ S+ discussed below in section
3.

10 Reading the arcs downward, Figure 3 represents the bottom part of the dual SIS I+« = <S4, E*> in which
for all s1, ... sn, t € S4, 81, ... sn =M tif and only if t is a superstring of a maximal substring q over s, ... sn.
Conjunction in 1. is equivalent to disjunction in 1, and vice versa. Also in l1» negation is a partial function

on S+: 7a™b" = € if m, n > 0; otherwise ~a™b" is undefined.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 5

[

/\

a?b?
Figure 3. |1 for the regular language S1 = {a™b": m, n 2 0}

The infinite sublanguages of S4, in addition to S itself, are all of the form {a™b™: m = 0,
0<n<qgornz0,0<m < p}, which may be more perspicuously represented as a*b=? |
asPb*. By setting p = q = 0 for each string in a sublanguage, the atomic chain
sublanguages based on a and b are obtained, namely X1z ={a™: m 2 0} and

X1 = {b™: n = 0}, which are proper subsets of every other infinite sublanguage of S..
Their intersection is the singleton {€} and their union S*1+ = X15 U X1p is a proper subset of
Ss.

S is closed under conjunction in S*1; i.e. every s € S1 is the sum of a pair t, u € S*;,""
and for every s ¢ Ss, there is no pair t, u € S*1 such that s is their sum." The members
of S*4, italicized in Figure 3, are the conjunctive generators of S+, and each member of
the complement S*'s = S1 - S*1 = {a™b": m, n > 0} is the disjoint sum of a single pair of
generators only.13 Consequently, S. is structurally unambiguous in l1: Every member of

S is either a generator or the disjoint sum of a single pair of generators. In addition, S

" Ift, u are both drawn from Xia or from Xib, then s = t or s = u; for example,ift=bandu=>b?thens=b
A b?=Db?=t. Otherwise if t € X1a and u € Xap, then s = tu, and vice versa; for example, if t = a2 and u = b?,
then s = a?b® = tu.

12 Only strings over {a, b} that are not in S, such as ba, need be considered. If ba = a A b, then ab *

a A b, since conjunction is a function. This is a contradiction, since ab = a A b in S1. Therefore ba#a A b.

3 Since the only generators considered in this paper are conjunctive ones, the term 'generator' is used
henceforth to refer to a conjunctive generator only.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 6
is closed under conjunction in S+ as a whole, but every member of S*'1+ except for ab is

an overlapping sum of at least one pair of members of S1."*

Every language like S*1 in I*1 = <S*1, => in Figure 4 that consists entirely of members of
its atomic chain sublanguages is identical to its generator set.'®

/ a a? as
€
\

b b? b®

Figure 4. I*, for S*1={a™ | b": m, n 2 0}

Next, |2 = <S2, => in Figure 5 contains the regular language Sz = {a™b"c”: m, n, p 2 0} =
{€, a, b, ¢, @3 ab, ac, b? bc, c?, a3, ab, a’c, ab? ab?, abc, ac?, b?, b%c, bc?, ¢?, ...} whose
generator setis S*2={a™ | b" | ¢®: m, n, p = 0}, italicized in Figure 5. Unlike S1, Sz is

structurally ambiguous, since every member of the complement S*'2 of the generator set
of the form a™b"c® (m, n, p > 0) can be expressed as a disjoint sum in three different
ways; e.g.abc=aA(bAac)=anbc;abc=(aAb)Ac=abAc;andabc=aAbAc,

corresponding to the structural ambiguity of three-conjunct coordination in English in
which phrases of the form A and B and C can be bracketed [A and [B and C]], [[A and
B] and C] and [A and B and C]. Expressing abc as the overlapping sum of ab, bc
neutralizes the structural ambiguity.

£
-
a b c
W
a2/ ab ac b2 bc c?
a3 a%b a’c a abc ac? b3 b?2c bc? \03

Figure 5. |2 for Sz = {a"b"c”: m, n, p 2 0}

Finally, Is = <Ss, &> in Figure 6, in which Sz ={(a | b)": n =0} = {g, a, b, a2, ab, ba, b?, a°,
a%b, aba, ab? ba? bab, b?a, b?, ...}, is the universal language over the vocabulary {a, b}.

' For example, a2b® = a2b2 A ab® = a%b A ab® = a2 A ab® = a%b? A b® = a2b A b®. The pair a%b?, ab® are the
maximal overlapping conjuncts of a%b?, as one of them must be a conjunct of every overlapping
conjunction of which a?b? is the sum.

'* The arcs in Figure 4 are understood to point to the left, just as in Figure 2. Conjunction is a partial
function in I*1, since every pair x, y in which x € {a™: m > 0} and y € {b": n > 0} lacks a greatest lower
bound.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 7

The atomic chain sublanguages of Sz are the same as for S1, namely Xz, = {a™: m = 0}
and Xsp, = {b": n 2 0}, so all the members of those sublanguages belong to the generator
set of Ss. Moreover, because of the non-commutativity of concatenation, no member of
the complement of Xsa U Xsp, namely S*'sap = {X € Ss: X = ab or x = ba}, is a discrete or
overlapping sum in Ss, and no pair of logically independent members of S*sa has a
product in Ss. For example, whereas aba = ab A aba is a contained sum in Ss, and

ab = ab v aba is a contained product, the pair a, b has no sum because both ab and ba

are candidate greatest lower bounds, but neither is a substring of the other, and the pair
ab, ba has no product, because both a and b are candidate least upper bounds, but

neither is a superstring of the other.'®. Because of the failure of conjunction in S*'sap,
every member of that set also belongs to the generator set of Ss, from which it follows

that Ss is co-extensive with its generator set. There are analogs to Is that are closed

under disjunction and conjunction and for which the generator set is a proper subset of
the set as a whole, but the languages of such SISs are context free; see section 3.2 for
discussion of such an analog.

£
///\
/wb\
a2 ab ba b?
as a%b aba ab? ba2 bab b2%a b3

Figure 6. s for Sz = {(a | b)": n 2 0}, showing the results of the partial failure of conjunction

2.2. The calculus of finite languages
l1, I*4, I2, and |s are SISs over infinite regular languages. It = <Sa5, =>, in which

S+ ={a""™ m, n =0, m+n < 4}, is a finite SIS, represented in its entirety by Figure 3
omitting the ellipsis at the bottom. Disjunction and the conditional are total functions on
Sst, but conjunction and negation are partial ones. Conjunction is defined for every pair

which has a greatest lower bound in l+f such as a2, ab?, since a% A ab? = a%b? € Sq, but
undefined for all others, such as a3, ab?, which have no greatest lower bound in Sis.
Negation is defined for a* and b* (they are each other's negations), but is undefined for

every other s € S+:. The generator set of Siris S*1r ={a™ | b™ m, n < 4}, and its

'® However according to Ferré, both a and b would be least upper bounds for the pair ab, ba in Ss, so that

disjunction would not be a function at all in Sa, but simply a relation.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 8

complement S*'+s = {a™b": m, n > 0, m+n < 4}. On the assumption that, for example, a3b?
is the sum of a2, ab?, Ssis not closed under conjunction of members of S*+, since a3,
ab? e Sy, but a3b? ¢ S41.17

The finite SIS l1ap = <S1ap, => in Figure 7, in which S1ap = {€, a, b, ab}, the sublanguage
of S. for the string ab, is the only classical (boolean) sublanguage SIS of I+ other than I,
in which the laws of double negation and excluded middle both hold. All the other SISs
for sublanguages of S+ are nonclassical, for example l1a2p: = <S1a22, E> in Figure 8, in
which S1a22 = {€, @, b, @3, ab, b?, a3, a%b, ab?, a%b, ab? a*b?}, the sublanguage of S for
the string a?b?. Disjunction, conjunction, negation and the conditional are all total
functions on S1a22, but the laws of double negation and excluded middle both fail in l1aze.
Double negation fails because (for example) 7—a%b = b2 = a2, not a?b. Excluded middle
fails because a%b v-a?b = a?b v b? = b, not . Like all sublanguages of a language that is

closed under conjunction, both S1ap and S1a2 are closed under conjunction.

Figure 7. l1ap for S1ab, the sublanguage of S: for the string ab

€

/\
\/

a’b?

Figure 8. l1a»: for Sia2, the sublanguage of S1 for the string a%b?

Finally, we consider a series of finite SISs and QISs that illustrate a variety of conditions
under which structural ambiguity does or does not arise in such structures. As noted

above, in the infinite regular language SIS Iz, certain strings are three-ways ambiguous,

" The assumption, however, depends on conjunction having the same properties outside of S as within
it. Taking into consideration all the strings that do not belong to S+f, the pair a3, ab? has no conjunction,

since a°b? and aba?® are candidates, and neither is a substring of the other. So it can be argued that S+ is
closed under conjunction because of this technicality.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 9

being disjoint sums in three different ways. The finite language SIS lia = <Saa, > and

QIS lsaq = <Saa, E@>, in Which Saa = {a, b, ¢, ab, ac, bc, abc}, the set of all substrings of

abc except g, are shown together in Figure 9, in which solid arcs indicate entailments in
both structures, and dashed arcs entailments in the QIS only, a convention followed
throughout this paper whenever an SIS and a QIS are diagrammed together.'® The

generator set of both structures is S*aa = {a, b, c}. In las, the string abc manifests the
three-way ambiguity of |2, since abc =a Abc =ab Ac=aAbAc, and all other members
of Saa are unambiguous. In lsaq, the string abc is four-ways ambiguous, since

abc = b A acin laag as well. A similar result holds for lzq; every string that is three-ways

ambiguous in Iz is four-ways ambiguous in l2q = <Sz, =o>.

By removing the string b from Saa, resulting in Sap = {a, ¢, ab, ac, bc, abc}, the SIS lap
and QIS lapq in Figure 10 are obtained, with the generator set S*4p = {a, c, ab, bc}. In

both structures, abc = a A bc = ab A ¢ and so is two-ways ambiguous. The further
removal of the string ac has no effect on the ambiguity of abc in the resulting SIS and
QIS, with the latter collapsing onto the former, as in Figure 11 for the SIS lac = <Sac, >

in which Sac = {a, c, ab, bc, abc} and in which abc = a A bc = ab A ¢ as before.

a b c

el

ab ac bc

abc
Figure 9. lsa and lsaq for the ambiguous language Saa

a C

]

ab ac bc

abc
Figure 10. lay and laa for the ambiguous language Sa

18 Adding € to Saa yields Szabc, the sublanguage of S: for the string abc. The QIS lzabca = <Szabe, FQ> is

classical, but the SIS lzabc = <Szanc, => is not. Double negation fails because —ac = abc and —abc = ¢, so

that -—ac = ¢, not ac. Excluded middle fails because the disjunction of ac and —ac (= abc) is undefined.
Both a and c¢ are candidates, but neither is a superstring of the other.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 10

] i
ab bc
\//
abc

Figure 11. ls«c for the ambiguous language Sac

If c is replaced by b, even if the string ac is included, the resulting SIS lsg = <Sa4q, => and
QIS lagq = <Sad, F@> in Figure 12, in which S4q = {a, b, ab, ac, bc, abc} and whose
generator set is S*ag = Saq - {abc}, are unambiguous. In both lag and lagq, abc = a A bc
only as a disjoint sum. However if a is replaced by b in Sa; and the string ac is included,
the resulting SIS lse = <Sae, => in Figure 13, in which Ss = {b, ¢, ab, ac, bc, abc} and
whose generator set is S*4 = {b, ¢, ab, ac}, is unambiguous, but the resulting QIS lseq =
<Sue, EQ> is two-ways ambiguous. In lse, abc = ab A ¢ only as a disjoint sum, whereas in
lseq, @bc = ab A ¢ = ac A b. There is no 'right' answer to the question "Is the string abc
structurally ambiguous in the language S2¢?" It depends on the implication structure it
occurs in. In lse, it is unambiguous, but in lseq, it is ambiguous. There would be a right

answer for a counterpart to Sse occurring as a sublanguage of a natural language, if
there were empirical evidence concerning the ambiguity of the counterpart to abc.

a b

e

ab ac bc
abc
Figure 12. lag and laga for the unambiguous language Saq

b o]

]

ab ac bc
abc
Figure 13. lse and lseq for Sse, which is unambiguous in lse but ambiguous in ls«eq

Further, if the string b is removed from Saq, yielding S« = {a, ab, ac, bc, abc}, and from
Sae, yielding Sag = {c, ab, ac, bc, abc}, the resulting SISs and QISs are unambiguous. In
both ls and lsq, abc = a A bec only as a disjoint sum, and in both lag and laga, abc =ab A c

only. However, if the string a is removed from Saq yielding San = {b, ab, ac, bc, abc},

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 1

abc = b A ac as a disjoint sum in lang in Figure 14, but abc is not a disjoint sum at all in

lan; i.e. there is no proper bracketing for it."®

/,/\

ab ac bc
abc
Figure 14. lay and lana for San, in which abc has a unique disjoint sum in lana but not in las

Next, starting again with Saa and removing bc yields Sai, and removing ab yields Sqj; the
structures lsi = <S4, > and l4j = <S4j, > are two-ways structurally ambiguous, whereas
the structures lsiq = <S4, EQ> and lsjq = <Sgj, =o> are three-ways structurally ambiguous;
In l4i = <Sa4j, => and lsjq = <Ss4j, =@>, in Figure 15 abc = ab A ¢ = a A b A ¢; in addition in
l4jq, abc = ac A b. On the other hand, removing ac from Sa, yields Sa, which is three-
ways structurally ambiguous in both lak = <S4k, E> and lakq = <S4, Eq> in Figure 16;

abc=abAc=aAbc=aAbAcinboth structures.

a b c
——
ab ac
abc

Figure 15. lsi and lsiq for Sa4;; in lsi, abce is two-ways structurally ambiguous; in lsiq it is three-ways
structurally ambiguous

a b c

- |

ab bc

R —

Figure 16. li and laka for S4;; in both of which abc is three-ways structurally ambiguous

If ab and bc are removed from Sa,, yielding Sa, the structures la = <S4, > and laq =
<S4, EQ> in Figure 17 are obtained; in the former, abc is unambiguous, since its only
analysis as a disjoint sum is as a A b A ¢; however abc is two-ways ambiguous in the

latter, since there it also has the analysis ac A b. On the other hand, if bc and ac are

¥ The string ac is neither a substring nor a superstring of any other string in lay, i.e. it is logically
independent.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 12

removed, retaining ab, or if ab and ac are removed, retaining bc, the resulting SIS and
QIS are equivalent, and are two-ways ambiguous. Finally, if ab, ac and bc are all
removed, resulting in Sam, = {a, b, ¢, abc}, the resulting SIS lsm and QIS lamq in Figure 18
are again equivalent and are unambiguous; aAb,aAc,bAc,andaAbAcare all
equivalent to abc.

a b o]
W
abc

Figure 17. ly and laq for Sa; in la, abc is unambiguous; in luq it is two-ways ambiguous

a b c
W
abc

Figure 18. lsm = lama for Sam, in which abc is unambiguous

3. The calculus of context-free languages

This section describes SISs and QISs for context-free languages. First, Is = <Ss, => in
Figure 19, is the SIS in which Ss is the context-free language {a"b": n = 0}. Conjunction
and disjunction are total functions in Is, but Ss is identical to its atomic chain
sublanguage Xsap. Consequently, the generator set S*s of Ss is also identical to it,
analogous to the situation in I*1 for the regular language S*+ ={a™ | b": m, n = 0}.

However, if the equality constraint on the number of a's and b's in Ss is relaxed, the
generator sets become context-free subsets of the sets as a whole and the resulting
structures approximate, but never reach, that of |1 for the regular language 11 = {a™b":
m, n = 0}, as shown in Figure 20 and Figure 21 for the first two steps in the
approximation: Is-1 = <Ss-1, >, in which Ss-+ = {a™b": m, n 2 0, |m-n| < 1}, and

ls-2 = <Ss-2, >, in which Ss-2 = {a™b": m, n 2 0, |m-n| < 2}. The generator set of Ss-1 is
S*s-1 ={a"b™ m, n =0, [m-n| = 1} U {g}, italicized in Figure 20, and its complement is
S*'s.1 = {@"b™ n > 0}. The generator set of Ss—2 is S*s> = {a™b™ m, n 20, |m-n| = 2} U

{€, a, b}, italicized in Figure 21, and its complement is S*'s-> = {a™b™: m, n > 0; |m-n| < 1.
Thus the strings containing equal or nearly equal numbers of a's and b's are disjoint
sums in the manner of the regular language SIS |1, e.g. ab = a A b in both Ss-1 and Ss-z,

and a?b = a2 A b, ab?=a A b? and a?b? = a2 A b?in Ss-2 alone.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 13

e— ab a?b? — a*b?

Figure 19. Is for the context-free language Ss = {a"b": n 2 0}

Figure 20. Is-1 for Ss-1 ={a"b": m,n20, n-1 <m < n+1}

£

/\

a*b?
Figure 21. Is> for Ss-2={a"b": m, n 20, n-2 < m < n+2}

Next SISs for two context-free mirror-image languages are presented. lse = <Se, > in
Figure 22, is the SIS in which Se = {xy : x € {a"b™: m, n 2 0}; y € {d"c™ m, n = 0}, the
mirror image of x with c in place of a and d in place of b} = {¢, ac, bd, ac?, abdc, b%d?
ac?, abdc?, ab?d?c, b3*d?, ...}. Conjunction is a partial function in ls and the generator set
S*e is identical to Se, since every member of Se belongs to some chain sublanguage of
Se, €.9. a3c® € Xeac, a2bdc? € Xepd1, ab®d?C € Xepegz, and b3d® € Xebd2, and S*s is the union
of those sublanguages.?® |, = <S7, => in Figure 23 is the SIS in which S7 = {xy: x €
{(a] b)" n=0},ye{(c|d)" n=0}, the mirror image of x with ¢ in place of a and d in
place of b} = {¢, ac, bd, a®c? bacd, abdc, b?d?, a3c?, ba?c?d, abacdc, b%acd?, abdc?,
babdcd, ab?d?c, b3*d?, ...}. Iz has a binary tree configuration, so that every string in Sz is

the disjunction of its daughters, e.g. abdc v b?d? = bd as in Se, and abdc? v babdcd =
abdc, as well as of any pair of its descendants on different branches that are not co-

% 3¢ has as many atomic chain sublanguages as there are paths through the tree in Figure 22.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 14

daughters, e.g. a?bdc? v b?d? = bd and abdc? v bacd = €. Conjunction, however, is a

partial function in Sz, and the generator set S*; is identical to Sy itself, just as in the case

of Ssin la.
€
/\bd
ac
/ /
a%c? abdc b2d?
asc? a*bdc? ab?d?c b3d?

Figure 22. Is for Se = {xy: x € {a"b": m, n 2 0}; y € {d"c™: m, n 2 0}, the mirror image of x with c in
place of a and d in place of b}

//\
ac bd
a3c? bacd abdc b2d?
asc® bazc%d abacdc b2%acd? a2bdc? babdcd ab?d%c b3d?

Figure 23. I; for S; = {xy: x e {(a | b)": n 2 0}; y € {(c | d)": n 2 0}, the mirror image of x as in Se}

3.1. Sequence implication structures for context-free languages
However, conjunction is a total function in the QIS leq = <Ss, o> in Figure 24 and the
QIS lzq = <S7, Eq> in Figure 25 that correspond to ls and |- respectively. In lsq, @?bdc? =q
a?c?, since ac? = rir2 where ri = a2, r. = ¢, and a*bdc? = qor1Qirg2 where go = g2 = € and
g+ = bd, so that qoq:1qz2 = bd € Se. The QIS leq is isomorphic to the SIS |1 for the regular
language S+ from which the context-free language Se is obtained by mirroring, and the
QIS Izq is isomorphic to the SIS |5 for the regular language Ss from which the context-
free language S- is obtained by mirroring. Consequently, the generator set for Se in leq
is the context-free language S*sq = {a™c™ m 2 0} u {b"d"™: n = 0}, italicized in Figure 24,
and its complement the context-free language S*'sq = {xy: x € {a™b™ m, n > 0}; y € {d"c™
m, n > 0}, the mirror image of x as in Se}. For Sz in lzq, however, the generator set is
identical to Sz as a whole, just as it is for Sz and for the same reason. There are analogs

to lzq that are closed under disjunction and conjunction and for which the generator set

is a proper subset of the set as a whole, but the languages of such SISs are context
sensitive; see section 4.2 for discussion of such an analog.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 15

£
/\bd
ac
S -
a3 \éit\)dcz é[{zdzc b3d?

Figure 24. lsq for S¢ with le superimposed; cf. Figure 3

a’c? ba%cd abacdc bZacd? b3d?
Figure 25. I;q for Sz with |- superimposed; cf. Figure 6

3.2. The calculus of inherently ambiguous context-free languages

Certain context-free languages are inherently ambiguous (Parikh 1961, Chomsky 1963:
389), in the sense that certain of their members are structurally ambiguous with respect
to every context-free grammar that generates them; i.e. each such string must have at

least two structural descriptions, or bracketings. For example, in Sen = {a"b"c”: m, n,
p=20,m=norn=p}={g a,c, a2 ab, bc, c? a3 abc, c?, a* a?b? a%bc, abc?, b?c?, c*, ...}

in lsn = <Sen, => in Figure 26, every string of the form a*b*c* (k > 0) receives two
bracketings, [a" [b* c]] and [[a* b¥] c¥], with respect to every context-free grammar that
generates Ssn. The generator set S*sn for lsn is the regular language {a™: m = 0} u

{c’: p 2 0} u {ab, bc}, the rest of the language being sums of members of S*s, or of other
sums, some of them not disjoint. For example, abc? = ab A ¢?, a?b? = a?2 A ab and a3b® =
a® A a?b? The structurally ambiguous members of Ssn, and only those, are disjoint sums
in two different ways that exactly match the bracketings; for example, abc =a A bc =

ab A ¢, and a?b?c? = a2 A b2c? = a2b? A c2

However the same correspondence of structural bracketings with disjoint sums does not
occur for the inherently ambiguous languages Ssm = {a™b"c” m,n, p20, m=nor

m = p} and Ssp, = {a™b"c”: m, n, p 20, m = p or n = p}. Choosing San to illustrate, every
string of the form a*b*c* (k > 0) receives the bracketings [[a* b*] c"] and [a" [b*] c*] with

respect to every context-free grammar that generates that language. However, those
strings are the disjoint sums in only one way, corresponding to the first of these

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 16

bracketings only, in the SIS lsm = <Sem, => in Figure 27; e.g. abc = ab A ¢, but abc #
ac A b because ac is not a substring of abc. However a“c* is a subsequence of a*b“c¥,

so in the QIS lsmq = <Sem, Eq@>, abc = ab A ¢ = ac A b as desired.

€
’///\
a c
a a C C
\/
a3 abc c?
j _— .
a a*b? a’bc abc? b?c? C

Figure 26. lsx for the inherently ambiguous context-free language Sen = {a™b"c”: m,n,p20, m=n

or n = p}
€
/\
b C

b* a?b? abzc abc? a2c? ¢

Figure 27. lsm and lsmq for the inherently ambiguous context-free language Ssm = {a"b"c’: m, n, p 2
0, m =norm=p}

The situation is different again for the inherently ambiguous context-free language Seo =
{a™"c”m,n,p=20,m=norm=porn=p}={g a, b, ¢, a3 ab, ac, bc, b?, c?, a3, abc,
b3, 3, ...} in the SIS ls = <Ss, => in Figure 28. All strings of the form a*b“c* (k > 0) in So
have three bracketings with respect to every context-free grammar that generates So,
namely [a* [b* c]], [[a* b¥] c*] and [a* [b¥] c*]. Each of those strings is also a disjoint sum
in three different ways in le: a“b*ck = a* A b*c* = a*b* A c* = a“ A b¥ A " for all k > 0. The
first two conjunctions correspond to the first two of the bracketings, but the third
conjunction does not correspond to the third bracketing. Instead it corresponds to the

'flat' bracketing [a*b“c"], which no context-free grammar can associate with the class of
strings contained within the bracketing, because the latter is a context-sensitive

language! On the other hand, the reason that there is no disjoint sum in ls
corresponding to the bracketing [a¥ [b¥] c¥] is the same as the absence of such a sum in
lsm: @"c* is not a substring of a*b*c* (k > 0).Since a*c" is a subsequence of ab“c* for all

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 17

k, each string of the form a*b“c* is a four-way disjoint sum in the QIS lsq: three that

correspond to the three bracketings assigned by every context-free grammar to that
string, plus one that corresponds to the flat bracketing.

€

T
e
a’2 ab ac bc b’2 c‘2
as abc b3 c

Figure 28. Is and leq for the inherently ambiguous context-free language So = {a™b"c”: m,n,p20, m
=norm=porn-=p}

3.3. A context-free replacement for the regular language Ssin |z

In section 2, it was pointed out that because of the non-commutativity of concatenation,
the generator set for the regular language Sz = {(a | b)": n = 0} in the SIS I3 is identical to

the entire language, i.e. that no member of Sz can be generated by conjunction.
However there is a context-free SIS Isg = <Ss, > in which Ssp is obtained by replacing

each member of Ss that entails ba with a new member that entails ab and no longer
entails ba, so that disjunction and conjunction are total functions, and some members of
Ssg are disjoint or overlapping sums, including all those in S*'+. To illustrate, compare

I3ab+ba = <Szab+ba, > in Figure 29, in which Szap+ba = {€, @, b, ab ba}, with lsggab = <Saggab,
> in Figure 30, in which Ssgeab = {€, a, b, ab, Bap}. In the latter, the string Baf replaces

ba in the former, where B is a copy of b but distinct from it, and 8 = bb™, in which b™" is
the string inverse of b, so that 3 (the trace of b), like €, has zero length. Disjunction and
conjunction are total functions in Sagsab, and its generator set S*sggap, italicized in Figure

30, is a proper subset of Sasggab, Since ab is the disjoint sum of the pair a, b in lsgsab,

whereas conjunction is not defined for a, b in lsab+ba and the generator set is identical to
the entire set.

Figure 29. lzab+ba, a finite substructure of Is showing failure of disjunction and conjunction

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 18

&
a b
ab
Babb" = Bap
Figure 30. lsgeab for the sublanguage Ssgeab of Ssg in which disjunction and conjunction are total
functions

The complete SIS Isg = <Ssg, >, in which Ssg = {xB"b": n, p 2 0, x € {(8'a")": i, j = 0, k > 0}
and #B8 = n} = {g, a, b, a2, ab, Baf, b?, a3, a’b, aBap, ab? Ba?3, Bapb, B%af3? ...}, is
defined recursively in (4).?" Recursive step (4.b.i) defines the language S1 & Ssg, Which

provides input to step (4.b.ii) for specifying the remaining members of Ssg, in which at

least one B precedes an a. These procedures together provide a recursive specification
of movement as copy and deletion, in which a single b on the right edge of a string,
immediately preceded by an a and zero or more traces, is deleted (i.e. replaced by a
trace) and a copy of b is inserted on the left edge of the string.?? For example, when

applied to ab, (4.b.ii) yields Ba, corresponding to ba in Ss; and to aBafb, it yields
BaBaf? = (Ba)?B?, corresponding to (ba)? in Sa.
4. Recursive definition of Ssg

a. Base case: € € Sg.
b. Recursive steps:
i. Ifs e Ssp, then as € Ssg and sb € Ssp.

ii. Ift=xaB"b (j 20)e Ss, then u =Bxap"™" € Ssp.
c. Closure: Nothing else is in Sap.
Figure 31 diagrams lsg = <Ssg, => for strings of length < 4. The atomic chain
sublanguages of Ssg are the same as for Ss and S+, namely Xsga = {@a™: m = 0} and
Xspp = {b": n 2 0}, so that the generator set S*sg of Ssg, italicized in Figure 31, includes
these as well as many other members of Ssg. The complement set S*'sg = Sag - S*3
consists of S*1 = {@a™b™: m, n > 0} u {aBxBb} U {a™BXBb™: m > 1 and x#a™, orn > 1},

where X € Ssg, X = a, and X & b.

2 Ssg is not a regular language because the number of B's in each of its members must equal the number
of B's.
2 Discuss relevance to the trace theory of movement with REFs.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 19

Table 1 shows some of the properties of members of Ssg of length < 4 excluding the two
atomic chain sublanguages. The second column provides the counterparts in Ss of the

listed member of Ssg; and the third column the maximal conjuncts of which the member

is the sum and that are not substrings of each other. If two are listed, the member is the
disjoint or overlapping sum of those conjuncts; and if one is listed, it belongs to a non-
atomic chain sublanguage to which the member also belongs.

/\b

\

/
Ba*3 a’Bap aBa?®B Ba?Bb aBapb /Bza,BZ Bapb?
| | T

B%a?B? (Ba)?B? aBaf? 52a|32b

B%ap°

Figure 31. Isg for Ssg, a context-free variant of Ss in which disjunction and conjunction are total
functions

S3g members of length Maximal independent

S; counterparts

< 4 excluding Taga, T3gp substrings
ab ab a,b

Baf ba ab

a’*b a’*b a? ab

ab? ab? ab, b?
aBaf aba Bap

Ba?* ba? a’b

Bafb bab Bap

BZaf? b%a Baf

a’b a’b a3 a%
a%b? a’b? a®b, ab?
ab? ab?® ab? b?
a’sap a’ba a?, aBaf
aBa? aba? Ba*

Ba3 ba3 a’b

aBaf3b (ab)? aBaf3, Bapb
aB?af3? ab%a BZaf3?
Ba?Bb ba%b Ba%B

(Ba)?B? baba aBaf3b

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 20

S3g members of length Maximal independent

S; counterparts

< 4 excluding Taga, T3gp substrings
B%a?B? b2a2 Ba’Bb
Bapb? bab? b2, Ba3b
B%afB?* b2ab Bafb?
B3af? b%a BZaf?b

Table 1. Some properties of members of Ss;; italicized members are generators

3.4. How to determine whether a language in an SIS is context free
A defining property of a context-free language S is that every grammar G that generates
S is center embedding, i.e. has at least one non-terminal symbol A such that A = tAv in

G, where t and v are non-null terminal strings and A = u, where u is a terminal string. If

A is a start symbol of G, then the strings u and s = tuv are members of S, and if u is
non-null, u is a center substring of w, defined as in ().?® Thus center embedding can
give rise to center substrings in a language, but it is not the only source, since ab is a

center substring of a?b? in S1, and S is a regular language.

5. u e Sis a center substring of s € S if and only if there are non-empty strings t, v

such that s = tuv there are no strings x, y such that s = xu or s = uy.?*
A logical characterization of the requirement for a language S in an SIS to be context
free can be given using the notion of center substring degree, analogous to center

embedding degree. A string s € S has center substring degree 1 (CS° 1) withu e Sifu

is @ maximal center substring of s, i.e. if s = tuv, where t and v are non-null, and u is not
a substring of any other center substring of s. CS® is defined recursively in (6).

6. Foralln >0, s has CS° n+1 with u if s = twv where w € S is a maximal center
substring of s and w has CS° n with u.
It now may be observed that S is a context-free language in an SIS | = <S, > if and
only if S contains a chain sublanguage X with no bound on CS° for members of X with
some y € X. For example, the context-free language Ss is identical to its atomic chain

sublanguage Xsab, in which there is no bound on CS° for members of Xsap with the atom
ab. In Ss-1, there is no bound on CS° for members of Xs-1a1 = {a"b"": n > 0} u {a"b":

n = 0} with the string ab.%® In S, there is no bound on CS° for members of any chain
sublanguage with the atom ac or bd. On the other hand, while there is no bound on CS°
of strings of the form a’b” with ab in the regular language S as a whole, there is no

chain sublanguage X1 of S+ with that property.

2 1fuin A = uis null, then take u to be tv and s to be t2v2.

* The requirement that there be no strings x, y such that s = xu or s = uy rules out, for example, b as a
center substring of b3,

%% Note that a"b” — a™'b" = a™'b", not a™"', a*'b, ..., nor a™'b™", since none of the latter strings belong to

S, a fact that is critical to the construction of Xs-1a1.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 21

4. The calculus of context-sensitive languages

This section describes logical structures for two types of well-known mildly context-
sensitive languages. REF needed First is |11 = <S11, > in Figure 32, in which S11 is the
context-sensitive language {a"b"c": n = 0} = {g, abc, a2b?c?, a®b3c?, ...}. Every non-empty
member of S+1 belongs to an atomic sublanguage, so is logically independent of every
other such member.?® Second is l12 = <S12, => in Figure 33, in which Sz = {Xy: x € {a™b":
m, n 2 0}; y € {c"d": m, n 2 0}, the copy of x with ¢ in place of a and d in place of b}.
Xazac and Xizpg are atomic chain sublanguages of Si2; every other member of S12
belongs to an atomic sublanguage. Like |1z is I3 = <S1s3, &> in Figure 34, in which S1s =

{xy:xe{(a|b)":n=0};ye{(c|d)™ nz0}, the copy of x with c in place of a and d in
place of b}.

¢ —— abc azb?c? ab3c?

Figure 32. I for the context-sensitive language S+1 = {a"b"c": n 2 0}

€
/\
/azc2 abcd b2d?2
asc? a*bczd ab?cd? b3d3

Figure 33. liz for S12 = {xy: x € {a"b™: m, n 2 0}; y € {c"d": m, n > 0}, the copy of x with c in place of a
and d in place of b}

€

//\

ac bd

/ \

azc? abcd badc b2d2

" ™~

asc® a%bc?d abacdc ab?cd? ba2dc? babdcd b%ad?c b3d?3

Figure 34. lis for Sia={xy: xe {(a| b)": n>0}; y € {(c | d)": n > 0}, the copy of x with c in place of a
and d in place of b}

These SISs for mildly context-sensitive languages all have unboundedly many members
that belong to atomic sublanguages, making the choice of SIS inappropriate for logical

% The substring (solid) arcs connecting € to other than its shortest superstring(s) have been omitted in
Figure 32 through Figure 34.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 22

investigation of their specific properties, but raising the possibility that it is a defining
feature of a significant subclass of context-sensitive languages.?’

4.1. Sequence implication structures for context-sensitive languages
QISs provide richer and potentially more useful structures for the analysis of context-
sensitive languages. For example, the QIS l11q = <S11, =@> in Figure 35, is isomorphic to

the SIS Is for the context-free language {a"b": n = 0} in Figure 19.28 Moreover, the QIS
l12q = <S12, E@> in Figure 36, is isomorphic to the SIS |1 for the regular language {a™b":
m, n = 0} in Figure 3.2°% The generator set for Sz in l12q is the context-free language
S*12q = {@Mc™ m > 0} u {b"d": n > 0}, italicized in Figure 36, and its complement the
context-sensitive language S*'12q = {xy: x € {a"b": m, n > 0}; y € {c"d™ m, n > 0}, the
copy of x with c in place of a and d in place of b}. Finally, the QIS l1aq = <S13, o> In
Figure 37, is isomorphic to the SIS Is for the regular language Sz = {(a | b)": n 2 0} in
Figure 6. The generator set for Sis in l13q is identical to S1s for the same reason that the

generator set for Sz is identical to Sz in |s.

Other applications of the use of QIS to the study of context-sensitive languages can be
made, such as the investigation of inherent ambiguity in languages like {a™b"c’d%: m, n,
p,g20;m=n=qorm=p=q}.

£
/\
= _@d\
/320:2 abed b
a%? “abed abod? b3

Figure 36. l1z and lizq for Si2; cf. Figure 3 and Figure 24

%" Not all context-sensitive languages have this property, for example {a"b: n > 0} = {ab, a%b*, a®b®, ...},
whose SIS is isomorphic to Is.

2 For example a?b?c? =q abc in lsq, since abc can be analyzed as rir, where r1 = ab, r; = ¢, and a%b?c? as
Qor1Qir2gz Where qo = a, g1 = b and q, = ¢, so that qyq:1q, = abc € Ses.

2 For example abcd =q ac in lsq, since ac can be analyzed as rir, where ri = a, r, = ¢, and abcd as

Qor1Q1rogo Where qo = €, g1 = b and g, = d, so that qyg1q, = bd € Se.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 23

== - ———— =
o= Pttt - - TSsze<io--T<Z
Se--- R e - ST, T T T s e

asc® 2bczd abacdc bzcd2 ba?dc? babdcd b%ad3c b3d?®

-

Figure 37. l13 and lsq for S1s; cf. Figure 6 and Figure 25

4.2. Context-sensitive replacements for the context-free language
Srqin the QIS I7g and context-sensitive language Sqin the QIS 130

In section 3.1, it was pointed out that because of the non-commutativity of
concatenation, the generator set for the context-free mirror image language Sz = {xy: x €

{(@|b)" n=0},ye{(c]|d)™ n=0}, the mirror image of x with c in place of a and d in
place of b} in the QIS I-q is identical to the entire language. However the context-

sensitive QIS lzpq = <Sz, o> in Which Syg is obtained by replacing each member of S;
that entails bacd with a new member that entails abdc and no longer entails bacd,
analogous to the definition of the SIS I3, and with comparable results. Figure 38

represents the finite substructure lzgasagcdy = <S7sagcdy, FQ> Of l7gq, iN Which S7ggagcdy =
{€, ac, bd, abdc, Bacdys} is the sublanguage of the string BaBcdy in Szg, where B and 3
are as in Ssg, Cis a copy of ¢, and y = cc™ (the trace of c). The language S is context
sensitive, as is shown by the fact that the intersection of Szg with the regular language

{B'ap'c*dy™: i, j, k, m= 0} is the context-sensitive language {s"ap"c"dy": n = 0}, and that
context-sensitive languages are closed under intersection with regular languages. A
similar result is obtained by replacing the QIS lisq by l13ga = <S1sg, Eq>, in which the

context-sensitive language Sasg is obtained by replacing each member of Sis that entails
badc with a new member that entails abcd and no longer entails bacd, analogous to the
definition of the SIS l-g, and with comparable results. Figure 39 represents the finite

substructure l1agagagocs = <S13geapnes, EQ> Of l1aga, in Which Siagsagocs = {€, ac, bd, abdc,
BaBDcd} is the sublanguage of the string BaBDcd in Si3g, where B and 3 are as in Ssg, D

is a copy of d, and & = dd™* (the trace of d).

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 24

abdc

Bchdy
Figure 38. lzgasapcay for the sublanguage Sggagcay Of S7g

£

/\

ac bd

—_ _—
—_ _—

abod

BaDcd
Figure 39. lisgagapocs for the sublanguage Sasggapocs Of S1ap

5. Applications for the study of natural languages
Not yet written.

References

REFs needed for trace theory of movement and for mildly context-sensitive languages.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert R.
Bush and Eugene Galanter, eds., Handbook of Mathematical Psychology, vol. I, pp.
323-418. New York: John Wiley and Sons.

Ferré, Sébastien. 2007. The efficient computation of complete and concise substring
scales with suffix trees. In S. O. Kuznetsov and S. Schmidt, eds., Formal Concept
Analysis (Lecture Notes in Computer Science 4390), pp. 98-113. Berlin: Springer.

Koslow, Arnold. 1992. A Structuralist Theory of Logic. Cambridge: Cambridge University
Press.

Langendoen, D. Terence. 2002. Sequence structure. In Bruce Nevin & Stephen M.
Johnson, eds., The Legacy of Zellig Harris: Language and Information into the 21st
Century, vol. 2: Computability of Language and Computer Applications, pp. 61-75.
Amsterdam: John Benjamins.

Leonard, Henry and Nelson Goodman. 1938. The calculus of individuals. Journal of
Symbolic Logic.

Parikh, Rohit. 1961. Language generating devices. Research Laboratory of Electronics
Quatrterly Progress Report 60: 199-212.

	D. Terence Langendoen
	University of Arizona
	Abstract goes here.
	1. String and sequence implication structures
	2. The calculus of regular languages
	2.1. The calculus of infinite regular languages
	2.2. The calculus of finite languages

	3. The calculus of context-free languages
	3.1. Sequence implication structures for context-free languages
	3.2. The calculus of inherently ambiguous context-free languages
	3.3. A context-free replacement for the regular language S₃ in I₃
	3.4. How to determine whether a language in an SIS is context free

	4. The calculus of context-sensitive languages
	4.1. Sequence implication structures for context-sensitive languages
	4.2. Context-sensitive replacements for the context-free language S₇Q in the QIS I₇Q and context-sensitive language S₁₃Q in the QIS I₁₃Q

	5. Applications for the study of natural languages
	References

