
 DRAFT OF 2010-03-14 -- DO NOT CITE OR QUOTE 1

The calculus of strings
D. Terence Langendoen

University of Arizona

War On String May Be Unwinnable, Says Cat General
Headline in The Onion 2005-07-27, http://www.theonion.com/content/node/37503

Abstract goes here.

1. String and sequence implication structures
This paper formalizes and applies the notion of the calculus, or logic, of strings
described in Ferré 2007: 112.

The string datatype can be seen as a logic, where formulas are sets of strings …,
the deduction relation … is based on … string containment …, and disjunction …
computes the maximal substrings shared by 2 strings.

This formalization uses Koslow's (1992) notion of an implication structure I = <S, ⊨>, in

which S is a set and ⊨ is an implication relation (Ferré's deduction relation) over S.

When S is a set of strings, i.e. a formal language, and ⊨ is the substring relation (Ferré's
string containment), I may be called a string implication structure (SIS) with the property
that for all s, t ∈ S, s ⊨ t if and only if t is a substring of s (equivalently, s is a superstring

of t). More generally, ⊨ satisfies the condition (1).

1. For all s₁, ... sn, t ∈ S: s₁, ... sn ⊨ t if and only if t is a substring of a minimal

superstring r over s₁, ... sn.1

The various logical operators are defined for an SIS in the manner of Koslow 1992, as
follows. The disjunction, or product, s ⋁ t of s, t ∈ S is the least string u ∈ S such that for

all v ∈ S, if s ⊨ v and t ⊨ v, then u ⊨ v. That is, u is the least upper bound, or maximal

substring, of the disjuncts s, t.2 The conjunction, or sum, s ⋀ t of s, t ∈ S is the least

string u ∈ S such that u ⊨ s and u ⊨ t. That is, u is the greatest lower bound, or minimal
superstring, of the conjuncts s, t.3 The negation ¬s of s is the implicationally weakest

1 A minimal superstring r over s₁, ... sn has each of s₁, ... sn as a substring, and any other candidate string
has some r as a substring. It is not required that r belong to S or that it be unique.
2 The singular 'substring' is used here, in contrast to Ferré's use of the plural 'substrings'; that is, as in
standard logic, disjunction is construed here as a logical function (or operator) on strings yielding at most
a single value, whereas Ferré construes it as a possibly multi-valued relation.
3 N-ary products and sums (e.g. s₁ ∨ … ∨ sn and s₁ ∧ … ∧ sn) are defined similarly. Throughout this paper,
the terms 'product' and 'sum' refer to the results (values) of disjunction and conjunction respectively,
'disjunction' and 'conjunction' to the operators themselves, and 'disjunct' and 'conjunct' to the arguments

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 2

string t that together with s entails every string in S. The conditional s → t of s and t is
the implicationally weakest string that together with s entails t.4 In addition, modal
operators of various sorts are definable for an SIS.

A set T ⊆ S is a sublanguage of S if and only if whenever s₁, ... sn ∈ T and s₁, ... sn ⊨ t,

t ∈ T. On the other hand, if s₁, ... sn ⊨ t and some si ∉ T (1 ≤ i ≤ n), then t may or not be a

member of T. That is, ⊨ preserves sublanguage in the way that ordinary entailment
preserves truth in propositional logic. S is, by definition, a sublanguage of itself. The
finite sublanguages of S (in addition to S, if S is finite) include, for all s ∈ S, the sets Ts

of all substrings of s. If Ts = {s, ε} if ε ∈ S (where ε is the empty string) and Ts = {s}
otherwise, then s is an atomic string in S, and Ts is an atomic sublanguage. Figure 1
shows a relationship between overlapping sublanguages Tu and Tv in a SIS <S, ⊨>,
where the arcs read upwards indicate the entailment relation.

Tu Tu ○ Tv Tv

 Tu Tv

 u v
Figure 1. Sublanguages Tu (light gray) and Tv (medium gray) that overlap (dark gray)

Xs = Ts ∪ Us is a chain sublanguage based on a sublanguage Ts, where Us = {s = s₀, s₁,
…, si₋₁, si, …} ⊆ S whose members jointly satisfy the conditions in (2). These conditions

insure that si is the least upper bound of the pair si₋₁, si, i.e. that si = si₋₁ ⋀ si, and that

there is no other t ∈ S such that si = si₋₁ ⋀ t. Figure 2, in which the arcs read leftward

indicate entailment in I = <S, ⊨>, shows a hypothetical chain sublanguage Xs = Ts ∪ Us
in which Ts = {s, t, u}.

2. For all si ∈ Us (i > 0):

a. si = si₋₁ → si

b. si ⊨ si₋₁
c. For all t ∈ S, if t satisfies (2.a) and (2.b), then t ⊨ si.

If S is infinite, then it contains at least one infinite chain sublanguage, unless only finitely
many members of S bear the substring relation to one another. If s is atomic in S, then
Xs is an atomic chain sublanguage.

of the respective operators. The terms 'product' and 'sum' for the results of disjunction and conjunction
are taken from the calculus of individuals of Leonard and Goodman (1938), which the calculus of strings
greatly resembles.
4 These operator definitions are all subject to the proviso 'if it exists'; that is the operators may be partial
functions on S or not be defined on it at all.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 3

 t

 u

s = s₀

…

si

si₊₁

…

Figure 2. Hypothetical chain sublanguage Xs

A weaker type of implication structure for a set of strings is a sequence implication
structure (QIS) I = <S, ⊨Q>, where S is a set of strings and ⊨Q is the subsequence (or

interruptible substring) relation with the property that for all s, t ∈ S, s ⊨Q t if and only if t
is subsequence of s, either continuous (i.e. a substring) or discontinuous; that is, either
s ⊨Q t, or t = r₁…rm (m > 1) and s = q₀r₁q₁…rmqm such that q₁, … qm-₁ are non-null and

q₀…qm ∈ S.5 More generally, ⊨Q satisfies the condition in (3).

3. For all s₁, ... sn, t ∈ S₁: s₁, ... sn ⊨Q t if and only if t is a subsequence of a minimal

superstring r over s₁, ... sn.
The various logical operators and the notion of sublanguage are defined for a QIS in the
same manner as for an SIS.

2. The calculus of regular languages
This section considers SISs and to a lesser extent QISs in which S is a regular
language, beginning with infinite regular languages.

2.1. The calculus of infinite regular languages
In I₁ = <S₁, ⊨>, S₁ is the regular language a*b* = {ambn: m, n ≥ 0} = {ε, a, b, aa = a², ab,

bb = b², a³, a²b, ab², b³, a⁴, a³b, a²b², ab³, b⁴, ...}.6 In I₁, ajbk ⊨ apbq if and only if p ≤ j and

q ≤ k, so that a²b ⊨ ab but a²b ⊭ ab².7 Since the minimal superstring r over any pair of

strings agbh, ajbk is amax(g, j)bmax(h, k), agbh, ajbk ⊨ apbq if and only if p ≤ max(g, j) and q ≤

max(h, k), so that a²b, ab² ⊨ a²b², but a²b, ab² ⊭ ab³.

Disjunction and conjunction are total functions on S₁. The product of any pair of

disjuncts agbh, ajbk is agbh ⋁ ajbk = amin(g, j)bmin(h, k), and the sum of any such pair of

conjuncts is agbh ⋀ ajbk amax(g, j)bmax(h, k). Three types of products and sums may be
distinguished. First, if g, k > 0 and h = j = 0, or if h, j > 0 and g = k = 0 (i.e. if one is a

5 It is not required that the individual strings ri qj belong to S, but only that their respective concatenations
do; cf. Langendoen 2002 for discussion of the 'strict subsequence' relation, which does require the
individual strings to belong to S.
6 I use the more prolix set notation for regular expressions throughout this paper for consistency with set
notation not involving regular expressions. ε represents the empty string.
7 Every entailment in I₁Q = <S₁, ⊨Q> is also valid in I₁ = <S₁, ⊨>, i.e. I₁ and I₁Q are equivalent structures.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 4

member of X₁a and the other of X₁b) the disjuncts and conjuncts (for the remainder of
this paragraph, juncts) are disjoint. Their product is ε, and their sum may be called a
disjoint sum. For example, a²b² = a² ⋀ b² is a disjoint sum. Second, if g = j or h = k, one
of the juncts is contained in the other, so that the product or sum is identical to one of its
juncts, and the product may be called a contained product, and the sum a contained
sum. For example, a²b = a²b ⋁ a²b² is a contained product; and a²b² = a²b ⋀ a²b² is a
contained sum. Otherwise, the juncts partly overlap, and the product may be called an
overlapping product, and the sum an overlapping sum. For example, ab = a²b ⋁ ab² is

an overlapping product; and in a²b² = a²b ⋀ ab² is an overlapping sum.

The conditional, likewise, is a total function on S₁. The conditional of agbh as antecedent
and ajbk as consequent is apbq, where p = j if j > g and p = 0 otherwise, and q = k if k > h
and q = 0 otherwise. For example, a² → ab = b, ab → a² = a² and ab → a = ε. On the
other hand, negation is undefined in S₁ since for any string s ∈ S₁, there is no string

t ∈ S₁, such that s, t ⊨ u for all u ∈ S₁.8

Modal operators can also be defined for I₁, such as the box (necessity) modal ⃞ambn =

ambn ∧ anbm = amax(m, n)bmax(m, n) and its counterpart diamond (possibility) modal ⃟ambn =

ambn ∨ anbm = amin(m, n)bmin(m, n).9 For example ⃞ab² = a²b², ⃟ab² = ab, ⃟⃞ab² = a²b²

and ⃞⃟ab² = ab, and in general ⃞s ⊨ s ⊨ ⃟s and ⃟⃞s ⊨ ⃞⃟s for all s ∈ S₁.

Figure 3 diagrams the top part of I₁; its arcs, when understood as pointing upward, show

all the one-premise non-reflexive entailments among the strings of S₁ of length < 4 and
some for those of length 4.10

8 This observation about negation holds for any SIS in which S is infinite, but not for its dual; see note 10.
9 ⃞ is a necessity modal in I₁, since for all s, t ∈ S₁, ⃞(s ⋀ t) ⇔ ⃞s ⋀ ⃞t and ⃞s ⋁ ⃞t ⊨ ⃞(s ⋁ t), but there

are s, t ∈ S₁ such that ⃞(s ⋁ t) ⊭ ⃞s ⋁ ⃞t, e.g. a²b, ab², since ⃞(ab² ⋁ a²b) = ⃞ab = ab, whereas

⃞ab² ⋁ ⃞a²b = a²b² ⋁ a²b² = a²b², and ab ⊭ a²b². ⃟ is a possibility modal in I₁, since for all s, t ∈ S₁,
⃟s ⋁ ⃟t ⇔ ⃟(s ⋁ t) and ⃟ (s ⋀ t) ⊨ ⃟s ⋀ ⃟t, but there are s, t ∈ S₁ such that ⃟s ⋀ ⃟t ⊭ ⃟(s ⋀ t), e.g.

a²b, ab², since ⃟ab² ∧ ⃟a²b = ab ∧ ab = ab, whereas ⃟(ab² ∧ a²b) = ⃟a²b² = a²b², and ab ⊭ a²b².

However ⃞ and ⃟ are not interdefinable using negation in the usual way since negation is undefined in I₁.
Both ⃞ and ⃟ map S₁ onto the context-free language S₅ = {anbn: n ≥ 0} ⊂ S₁ discussed below in section
3.
10 Reading the arcs downward, Figure 3 represents the bottom part of the dual SIS I₁^ = <S₁, ⊨^> in which

for all s₁, ... sn, t ∈ S₁, s₁, ... sn ⊨^ t if and only if t is a superstring of a maximal substring q over s₁, ... sn.

Conjunction in I₁^ is equivalent to disjunction in I₁, and vice versa. Also in I₁^ negation is a partial function

on S₁: ¬ambn = ε if m, n > 0; otherwise ¬ambn is undefined.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 5

ε

 a b

 a² ab b²

 a³ a²b ab² b³

a4 a³b a²b² ab³ b4
…

Figure 3. I₁ for the regular language S₁ = {ambn: m, n ≥ 0}

The infinite sublanguages of S₁, in addition to S₁ itself, are all of the form {ambn: m ≥ 0,

0 ≤ n ≤ q or n ≥ 0, 0 ≤ m ≤ p}, which may be more perspicuously represented as a*b≤q |

a≤pb*. By setting p = q = 0 for each string in a sublanguage, the atomic chain

sublanguages based on a and b are obtained, namely X₁a = {am: m ≥ 0} and

X₁b = {bn: n ≥ 0}, which are proper subsets of every other infinite sublanguage of S₁.
Their intersection is the singleton {ε} and their union S*₁ = X₁a ∪ X₁b is a proper subset of

S₁.

S₁ is closed under conjunction in S*₁; i.e. every s ∈ S₁ is the sum of a pair t, u ∈ S*₁,11

and for every s ∉ S₁, there is no pair t, u ∈ S*₁ such that s is their sum.12 The members

of S*₁, italicized in Figure 3, are the conjunctive generators of S₁, and each member of

the complement S*′₁ = S₁ - S*₁ = {ambn: m, n > 0} is the disjoint sum of a single pair of

generators only.13 Consequently, S₁ is structurally unambiguous in I₁: Every member of

S₁ is either a generator or the disjoint sum of a single pair of generators. In addition, S₁

11 If t, u are both drawn from X₁a or from X₁b, then s = t or s = u; for example, if t = b and u = b², then s = b

∧ b² = b² = t. Otherwise if t ∈ X₁a and u ∈ X₁b, then s = tu, and vice versa; for example, if t = a² and u = b³,
then s = a²b³ = tu.
12 Only strings over {a, b} that are not in S₁, such as ba, need be considered. If ba = a ∧ b, then ab ≠

a ∧ b, since conjunction is a function. This is a contradiction, since ab = a ∧ b in S₁. Therefore ba ≠ a ∧ b.
13 Since the only generators considered in this paper are conjunctive ones, the term 'generator' is used
henceforth to refer to a conjunctive generator only.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 6

is closed under conjunction in S₁ as a whole, but every member of S*′₁ except for ab is

an overlapping sum of at least one pair of members of S₁.14

Every language like S*₁ in I*₁ = <S*₁, ⊨> in Figure 4 that consists entirely of members of
its atomic chain sublanguages is identical to its generator set.15

 a a² a³

ε …

 b b² b³

Figure 4. I*₁ for S*₁ = {am | bn: m, n ≥ 0}

Next, I₂ = <S₂, ⊨> in Figure 5 contains the regular language S₂ = {ambncp: m, n, p ≥ 0} =
{ε, a, b, c, a², ab, ac, b², bc, c², a³, a²b, a²c, ab², ab², abc, ac², b³, b²c, bc², c³, ...} whose
generator set is S*₂ = {am | bn | cp: m, n, p ≥ 0}, italicized in Figure 5. Unlike S₁, S₂ is

structurally ambiguous, since every member of the complement S*′₂ of the generator set
of the form ambncp (m, n, p > 0) can be expressed as a disjoint sum in three different
ways; e.g. abc = a ⋀ (b ⋀ c) = a ⋀ bc; abc = (a ⋀ b) ⋀ c = ab ⋀ c; and abc = a ⋀ b ⋀ c,
corresponding to the structural ambiguity of three-conjunct coordination in English in
which phrases of the form A and B and C can be bracketed [A and [B and C]], [[A and
B] and C] and [A and B and C]. Expressing abc as the overlapping sum of ab, bc
neutralizes the structural ambiguity.

ε

a b c

a² ab ac b² bc c²

a³ a²b a²c ab² abc ac² b³ b²c bc² c³
…

Figure 5. I₂ for S₂ = {ambncp: m, n, p ≥ 0}

Finally, I₃ = <S₃, ⊨> in Figure 6, in which S₃ = {(a | b)n: n ≥ 0} = {ε, a, b, a², ab, ba, b², a³,
a²b, aba, ab², ba², bab, b²a, b³, …}, is the universal language over the vocabulary {a, b}.

14 For example, a²b³ = a²b² ∧ ab³ = a²b ∧ ab³ = a² ∧ ab³ = a²b² ∧ b³ = a²b ∧ b³. The pair a²b², ab³ are the
maximal overlapping conjuncts of a²b³, as one of them must be a conjunct of every overlapping
conjunction of which a²b³ is the sum.
15 The arcs in Figure 4 are understood to point to the left, just as in Figure 2. Conjunction is a partial
function in I*₁, since every pair x, y in which x ∈ {am: m > 0} and y ∈ {bn: n > 0} lacks a greatest lower
bound.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 7

The atomic chain sublanguages of S₃ are the same as for S₁, namely X₃a = {am: m ≥ 0}

and X₃b = {bn: n ≥ 0}, so all the members of those sublanguages belong to the generator

set of S₃. Moreover, because of the non-commutativity of concatenation, no member of

the complement of X₃a ∪ X₃b, namely S*'₃ab = {x ∈ S₃: x ⊨ ab or x ⊨ ba}, is a discrete or

overlapping sum in S₃, and no pair of logically independent members of S*'₃ab has a

product in S₃. For example, whereas aba = ab ∧ aba is a contained sum in S₃, and

ab = ab ∨ aba is a contained product, the pair a, b has no sum because both ab and ba
are candidate greatest lower bounds, but neither is a substring of the other, and the pair
ab, ba has no product, because both a and b are candidate least upper bounds, but
neither is a superstring of the other.16. Because of the failure of conjunction in S*'₃ab,

every member of that set also belongs to the generator set of S₃, from which it follows

that S₃ is co-extensive with its generator set. There are analogs to I₃ that are closed
under disjunction and conjunction and for which the generator set is a proper subset of
the set as a whole, but the languages of such SISs are context free; see section 3.2 for
discussion of such an analog.

 ε

 a b

 a² ab ba b²

a³ a²b aba ab² ba² bab b²a b³
…

Figure 6. I₃ for S₃ = {(a | b)n: n ≥ 0}, showing the results of the partial failure of conjunction

2.2. The calculus of finite languages
I₁, I*₁, I₂, and I₃ are SISs over infinite regular languages. I₁f = <S₁f, ⊨>, in which

S₁f = {ambn: m, n ≥ 0, m+n ≤ 4}, is a finite SIS, represented in its entirety by Figure 3
omitting the ellipsis at the bottom. Disjunction and the conditional are total functions on
S₁f, but conjunction and negation are partial ones. Conjunction is defined for every pair

which has a greatest lower bound in I₁f such as a², ab², since a² ⋀ ab² = a²b² ∈ S₁f, but

undefined for all others, such as a³, ab², which have no greatest lower bound in S₁f.

Negation is defined for a⁴ and b⁴ (they are each other's negations), but is undefined for

every other s ∈ S₁f. The generator set of S₁f is S*₁f ={am | bn: m, n ≤ 4}, and its

16 However according to Ferré, both a and b would be least upper bounds for the pair ab, ba in S₃, so that

disjunction would not be a function at all in S₃, but simply a relation.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 8

complement S*′₁f = {ambn: m, n > 0, m+n ≤ 4}. On the assumption that, for example, a³b²

is the sum of a³, ab², S₁f is not closed under conjunction of members of S*₁f, since a³,

ab² ∈ S₁f, but a³b² ∉ S₁f.17

The finite SIS I₁ab = <S₁ab, ⊨> in Figure 7, in which S₁ab = {ε, a, b, ab}, the sublanguage

of S₁ for the string ab, is the only classical (boolean) sublanguage SIS of I₁ other than Iε,
in which the laws of double negation and excluded middle both hold. All the other SISs
for sublanguages of S₁ are nonclassical, for example I₁a²b² = <S₁a²b², ⊨> in Figure 8, in

which S₁a²b² = {ε, a, b, a², ab, b², a³, a²b, ab², a²b, ab², a²b²}, the sublanguage of S₁ for
the string a²b². Disjunction, conjunction, negation and the conditional are all total
functions on S₁a²b², but the laws of double negation and excluded middle both fail in I₁a²b².
Double negation fails because (for example) ¬¬a²b = ¬b² = a², not a²b. Excluded middle
fails because a²b ⋁¬a²b = a²b ⋁ b² = b, not ε. Like all sublanguages of a language that is

closed under conjunction, both S₁ab and S₁a²b² are closed under conjunction.

ε

 a b

 ab
Figure 7. I₁ab for S₁ab, the sublanguage of S₁ for the string ab

ε

 a b

 a² ab b²

 a²b ab²

 a²b²

Figure 8. I₁a²b² for S₁a²b², the sublanguage of S₁ for the string a²b²

Finally, we consider a series of finite SISs and QISs that illustrate a variety of conditions
under which structural ambiguity does or does not arise in such structures. As noted
above, in the infinite regular language SIS I₂, certain strings are three-ways ambiguous,

17 The assumption, however, depends on conjunction having the same properties outside of S₁f as within

it. Taking into consideration all the strings that do not belong to S₁f, the pair a³, ab² has no conjunction,

since a³b² and aba³ are candidates, and neither is a substring of the other. So it can be argued that S₁f is
closed under conjunction because of this technicality.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 9

being disjoint sums in three different ways. The finite language SIS I₄a = <S₄a, ⊨> and

QIS I₄aQ = <S₄a, ⊨Q>, in which S₄a = {a, b, c, ab, ac, bc, abc}, the set of all substrings of
abc except ε, are shown together in Figure 9, in which solid arcs indicate entailments in
both structures, and dashed arcs entailments in the QIS only, a convention followed
throughout this paper whenever an SIS and a QIS are diagrammed together.18 The
generator set of both structures is S*₄a = {a, b, c}. In I₄a, the string abc manifests the

three-way ambiguity of I₂, since abc = a ⋀ bc = ab ⋀ c = a ⋀ b ⋀ c, and all other members

of S₄a are unambiguous. In I₄aQ, the string abc is four-ways ambiguous, since

abc = b ⋀ ac in I₄aQ as well. A similar result holds for I₂Q; every string that is three-ways

ambiguous in I₂ is four-ways ambiguous in I₂Q = <S₂, ⊨Q>.

By removing the string b from S₄a, resulting in S₄b = {a, c, ab, ac, bc, abc}, the SIS I₄b

and QIS I₄bQ in Figure 10 are obtained, with the generator set S*₄b = {a, c, ab, bc}. In

both structures, abc = a ⋀ bc = ab ⋀ c and so is two-ways ambiguous. The further
removal of the string ac has no effect on the ambiguity of abc in the resulting SIS and
QIS, with the latter collapsing onto the former, as in Figure 11 for the SIS I₄c = <S₄c, ⊨>

in which S₄c = {a, c, ab, bc, abc} and in which abc = a ⋀ bc = ab ⋀ c as before.

 a b c

 ab ac bc

 abc

Figure 9. I₄a and I₄aQ for the ambiguous language S₄a

 a c

 ab ac bc

 abc

Figure 10. I₄b and I₄bQ for the ambiguous language S₄b

18 Adding ε to S₄a yields S₂abc, the sublanguage of S₂ for the string abc. The QIS I₂abcQ = <S₂abc, ⊨Q> is

classical, but the SIS I₂abc = <S₂abc, ⊨> is not. Double negation fails because ¬ac = abc and ¬abc = ε, so
that ¬¬ac = ε, not ac. Excluded middle fails because the disjunction of ac and ¬ac (= abc) is undefined.
Both a and c are candidates, but neither is a superstring of the other.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 10

 a c

 ab bc

 abc

Figure 11. I₄c for the ambiguous language S₄c

If c is replaced by b, even if the string ac is included, the resulting SIS I₄d = <S₄d, ⊨> and

QIS I₄dQ = <S₄d, ⊨Q> in Figure 12, in which S₄d = {a, b, ab, ac, bc, abc} and whose

generator set is S*₄d = S₄d - {abc}, are unambiguous. In both I₄d and I₄dQ, abc = a ⋀ bc

only as a disjoint sum. However if a is replaced by b in S₄c and the string ac is included,

the resulting SIS I₄e = <S₄e, ⊨> in Figure 13, in which S₄e = {b, c, ab, ac, bc, abc} and

whose generator set is S*₄e = {b, c, ab, ac}, is unambiguous, but the resulting QIS I₄eQ =

<S₄e, ⊨Q> is two-ways ambiguous. In I₄e, abc = ab ⋀ c only as a disjoint sum, whereas in

I₄eQ, abc = ab ⋀ c = ac ⋀ b. There is no 'right' answer to the question "Is the string abc

structurally ambiguous in the language S₄e?" It depends on the implication structure it

occurs in. In I₄e, it is unambiguous, but in I₄eQ, it is ambiguous. There would be a right

answer for a counterpart to S₄e occurring as a sublanguage of a natural language, if
there were empirical evidence concerning the ambiguity of the counterpart to abc.

 a b

 ab ac bc

 abc

Figure 12. I₄d and I₄dQ for the unambiguous language S₄d

 b c

 ab ac bc

 abc

Figure 13. I₄e and I₄eQ for S₄e, which is unambiguous in I₄e but ambiguous in I₄eQ

Further, if the string b is removed from S₄d, yielding S₄f = {a, ab, ac, bc, abc}, and from

S₄e, yielding S₄g = {c, ab, ac, bc, abc}, the resulting SISs and QISs are unambiguous. In

both I₄f and I₄fQ, abc = a ⋀ bc only as a disjoint sum, and in both I₄g and I₄gQ, abc = ab ⋀ c

only. However, if the string a is removed from S₄d yielding S₄h = {b, ab, ac, bc, abc},

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 11

abc = b ⋀ ac as a disjoint sum in I₄hQ in Figure 14, but abc is not a disjoint sum at all in

I₄h; i.e. there is no proper bracketing for it.19

 b

 ab ac bc

 abc
Figure 14. I₄h and I₄hQ for S₄h, in which abc has a unique disjoint sum in I₄hQ but not in I₄h

Next, starting again with S₄a and removing bc yields S₄i, and removing ab yields S₄j; the
structures I₄i = <S₄i, ⊨> and I₄j = <S₄j, ⊨> are two-ways structurally ambiguous, whereas

the structures I₄iQ = <S₄i, ⊨Q> and I₄jQ = <S₄j, ⊨Q> are three-ways structurally ambiguous;

In I₄i = <S₄i, ⊨> and I₄jQ = <S₄j, ⊨Q>, in Figure 15 abc = ab ∧ c = a ∧ b ∧ c; in addition in

I₄jQ, abc = ac ∧ b. On the other hand, removing ac from S₄a yields S₄k, which is three-
ways structurally ambiguous in both I₄k = <S₄k, ⊨> and I₄kQ = <S₄k, ⊨Q> in Figure 16;

abc = ab ∧ c = a ∧ bc = a ∧ b ∧ c in both structures.

 a b c

 ab ac

 abc

Figure 15. I₄i and I₄iQ for S₄i; in I₄i, abc is two-ways structurally ambiguous; in I₄iQ it is three-ways
structurally ambiguous

 a b c

 ab bc

 abc
Figure 16. I₄k and I₄kQ for S₄i; in both of which abc is three-ways structurally ambiguous

If ab and bc are removed from S₄a, yielding S₄l, the structures I₄l = <S₄l, ⊨> and I₄lQ =

<S₄l, ⊨Q> in Figure 17 are obtained; in the former, abc is unambiguous, since its only

analysis as a disjoint sum is as a ∧ b ∧ c; however abc is two-ways ambiguous in the

latter, since there it also has the analysis ac ∧ b. On the other hand, if bc and ac are

19 The string ac is neither a substring nor a superstring of any other string in I₄h, i.e. it is logically
independent.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 12

removed, retaining ab, or if ab and ac are removed, retaining bc, the resulting SIS and
QIS are equivalent, and are two-ways ambiguous. Finally, if ab, ac and bc are all
removed, resulting in S₄m = {a, b, c, abc}, the resulting SIS I₄m and QIS I₄mQ in Figure 18
are again equivalent and are unambiguous; a ∧ b, a ∧ c, b ∧ c, and a ∧ b ∧ c are all
equivalent to abc.

 a b c

 ac

 abc

Figure 17. I₄l and I₄lQ for S₄l; in I₄l, abc is unambiguous; in I₄lQ it is two-ways ambiguous

 a b c

 abc

Figure 18. I₄m ≡ I₄mQ for S₄m, in which abc is unambiguous

3. The calculus of context-free languages
This section describes SISs and QISs for context-free languages. First, I₅ = <S₅, ⊨> in

Figure 19, is the SIS in which S₅ is the context-free language {anbn: n ≥ 0}. Conjunction

and disjunction are total functions in I₅, but S₅ is identical to its atomic chain

sublanguage X₅ab. Consequently, the generator set S*₅ of S₅ is also identical to it,

analogous to the situation in I*₁ for the regular language S*₁ = {am | bn: m, n ≥ 0}.

However, if the equality constraint on the number of a's and b's in S₅ is relaxed, the
generator sets become context-free subsets of the sets as a whole and the resulting
structures approximate, but never reach, that of I₁ for the regular language I₁ = {ambn:
m, n ≥ 0}, as shown in Figure 20 and Figure 21 for the first two steps in the
approximation: I₅₋₁ = <S₅₋₁, ⊨>, in which S₅₋₁ = {ambn: m, n ≥ 0, |m-n| ≤ 1}, and

I₅₋₂ = <S₅₋₂, ⊨>, in which S₅₋₂ = {ambn: m, n ≥ 0, |m-n| ≤ 2}. The generator set of S₅₋₁ is

S*₅₋₁ = {ambn: m, n ≥ 0, |m-n| = 1} ⋃ {ε}, italicized in Figure 20, and its complement is

S*′₅₋₁ = {anbn: n > 0}. The generator set of S₅₋₂ is S*₅₋₂ = {ambn: m, n ≥ 0, |m-n| = 2} ⋃

{ε, a, b}, italicized in Figure 21, and its complement is S*′₅₋₂ = {ambn: m, n > 0; |m-n| ≤ 1.
Thus the strings containing equal or nearly equal numbers of a's and b's are disjoint
sums in the manner of the regular language SIS I₁, e.g. ab = a ⋀ b in both S₅₋₁ and S₅₋₂,
and a²b = a² ⋀ b, ab² = a ⋀ b² and a²b² = a² ⋀ b² in S₅₋₂ alone.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 13

 ε ab a²b² a³b³ …

Figure 19. I₅ for the context-free language S₅ = {anbn: n ≥ 0}

ε

 a b

 ab

 a²b ab²

a²b²
…

Figure 20. I₅₋₁ for S₅₋₁ = {ambn: m, n ≥ 0, n-1 ≤ m ≤ n+1}

ε

 a b

 a² ab b²

 a²b ab²

 a³b a²b² ab³

…
Figure 21. I₅₋₂ for S₅₋₂ = {ambn: m, n ≥ 0, n-2 ≤ m ≤ n+2}

Next SISs for two context-free mirror-image languages are presented. I₆ = <S₆, ⊨> in

Figure 22, is the SIS in which S₆ = {xy : x ∈ {ambn: m, n ≥ 0}; y ∈ {dncm: m, n ≥ 0}, the
mirror image of x with c in place of a and d in place of b} = {ε, ac, bd, a²c², abdc, b²d²,
a³c³, a²bdc², ab²d²c, b³d³, …}. Conjunction is a partial function in I₆ and the generator set

S*₆ is identical to S₆, since every member of S₆ belongs to some chain sublanguage of

S₆, e.g. a³c³ ∈ X₆ac, a²bdc² ∈ X₆bd₁, ab²d²c ∈ X₆b²d², and b³d³ ∈ X₆bd₂, and S*₆ is the union

of those sublanguages.20 I₇ = <S₇, ⊨> in Figure 23 is the SIS in which S₇ = {xy: x ∈

{(a | b)n: n ≥ 0}, y ∈ {(c | d)n: n ≥ 0}, the mirror image of x with c in place of a and d in
place of b} = {ε, ac, bd, a²c², bacd, abdc, b²d², a³c³, ba²c²d, abacdc, b²acd², a²bdc²,
babdcd, ab²d²c, b³d³, …}. I₇ has a binary tree configuration, so that every string in S₇ is

the disjunction of its daughters, e.g. abdc ⋁ b²d² = bd as in S₆, and a²bdc² ⋁ babdcd =
abdc, as well as of any pair of its descendants on different branches that are not co-

20 S₆ has as many atomic chain sublanguages as there are paths through the tree in Figure 22.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 14

daughters, e.g. a²bdc² ⋁ b²d² = bd and a²bdc² ⋁ ba²c²d = ε. Conjunction, however, is a

partial function in S₇, and the generator set S*₇ is identical to S₇ itself, just as in the case

of S₃ in I₃.

ε

 ac bd

 a²c² abdc b²d²

a³c³ a²bdc² ab²d²c b³d³
…

Figure 22. I₆ for S₆ = {xy: x ∈ {ambn: m, n ≥ 0}; y ∈ {dncm: m, n ≥ 0}, the mirror image of x with c in
place of a and d in place of b}

 ε

 ac bd

 a²c² bacd abdc b²d²

a³c³ ba²c²d abacdc b²acd² a²bdc² babdcd ab²d²c b³d³

…
Figure 23. I₇ for S₇ = {xy: x ∈ {(a | b)n: n ≥ 0}; y ∈ {(c | d)n: n ≥ 0}, the mirror image of x as in S₆}

3.1. Sequence implication structures for context-free languages
However, conjunction is a total function in the QIS I₆Q = <S₆, ⊨Q> in Figure 24 and the

QIS I₇Q = <S₇, ⊨Q> in Figure 25 that correspond to I₆ and I₇ respectively. In I₆Q, a²bdc² ⊨Q

a²c², since a²c² = r₁r₂ where r₁ = a², r₂ = c²; and a²bdc² = q₀r₁q₁r₂q₂ where q₀ = q₂ = ε and

q₁ = bd, so that q₀q₁q₂ = bd ∈ S₆. The QIS I₆Q is isomorphic to the SIS I₁ for the regular

language S₁ from which the context-free language S₆ is obtained by mirroring, and the

QIS I₇Q is isomorphic to the SIS I₃ for the regular language S₃ from which the context-

free language S₇ is obtained by mirroring. Consequently, the generator set for S₆ in I₆Q

is the context-free language S*₆Q = {amcm: m ≥ 0} ∪ {bndn: n ≥ 0}, italicized in Figure 24,

and its complement the context-free language S*′₆Q = {xy: x ∈ {ambn: m, n > 0}; y ∈ {dncm:

m, n > 0}, the mirror image of x as in S₆}. For S₇ in I₇Q, however, the generator set is

identical to S₇ as a whole, just as it is for S₃ and for the same reason. There are analogs

to I₇Q that are closed under disjunction and conjunction and for which the generator set
is a proper subset of the set as a whole, but the languages of such SISs are context
sensitive; see section 4.2 for discussion of such an analog.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 15

ε

 ac bd

 a²c² abdc b²d²

a³c³ a²bdc² ab²d²c b³d³
…

Figure 24. I₆Q for S₆ with I₆ superimposed; cf. Figure 3

 ε

 ac bd

 a²c² bacd abdc b²d²

a³c³ ba²c²d abacdc b²acd² a²bdc² babdcd ab²d²c b³d³

…
Figure 25. I₇Q for S₇ with I₇ superimposed; cf. Figure 6

3.2. The calculus of inherently ambiguous context-free languages
Certain context-free languages are inherently ambiguous (Parikh 1961, Chomsky 1963:
389), in the sense that certain of their members are structurally ambiguous with respect
to every context-free grammar that generates them; i.e. each such string must have at
least two structural descriptions, or bracketings. For example, in S₈n = {ambncp: m, n,

p ≥ 0, m = n or n = p} = {ε, a, c, a², ab, bc, c², a³, abc, c³, a⁴, a²b², a²bc, abc², b²c², c⁴, …}

in I₈n = <S₈n, ⊨> in Figure 26, every string of the form akbkck (k > 0) receives two
bracketings, [ak [bk ck]] and [[ak bk] ck], with respect to every context-free grammar that
generates S₈n. The generator set S*₈n for I₈n is the regular language {am: m ≥ 0} ∪

{cp: p ≥ 0} ∪ {ab, bc}, the rest of the language being sums of members of S*₈n or of other

sums, some of them not disjoint. For example, abc² = ab ⋀ c², a²b² = a² ⋀ ab and a³b³ =

a³ ⋀ a²b². The structurally ambiguous members of S₈n, and only those, are disjoint sums

in two different ways that exactly match the bracketings; for example, abc = a ⋀ bc =

ab ⋀ c, and a²b²c² = a² ⋀ b²c² = a²b² ⋀ c².

However the same correspondence of structural bracketings with disjoint sums does not
occur for the inherently ambiguous languages S₈m = {ambncp: m, n, p ≥ 0, m = n or

m = p} and S₈p = {ambncp: m, n, p ≥ 0, m = p or n = p}. Choosing S₈m to illustrate, every
string of the form akbkck (k > 0) receives the bracketings [[ak bk] ck] and [ak [bk] ck] with
respect to every context-free grammar that generates that language. However, those
strings are the disjoint sums in only one way, corresponding to the first of these

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 16

bracketings only, in the SIS I₈m = <S₈m, ⊨> in Figure 27; e.g. abc = ab ⋀ c, but abc ≠

ac ⋀ b because ac is not a substring of abc. However akck is a subsequence of akbkck,

so in the QIS I₈mQ = <S₈m, ⊨Q>, abc = ab ⋀ c = ac ⋀ b as desired.

ε

a c

a² ab bc c²

a³ abc c³

 a4 a²b² a²bc abc² b²c² c4

…
Figure 26. I₈n for the inherently ambiguous context-free language S₈n = {ambncp: m, n, p ≥ 0, m = n

or n = p}

ε

b c

b² ab ac c²

b³ abc c³

 b4 a²b² ab²c abc² a²c² c4

…
Figure 27. I₈m and I₈mQ for the inherently ambiguous context-free language S₈m = {ambncp: m, n, p ≥

0, m = n or m = p}

The situation is different again for the inherently ambiguous context-free language S₉ =

{ambncp: m, n, p ≥ 0, m = n or m = p or n = p} = {ε, a, b, c, a², ab, ac, bc, b², c², a³, abc,

b³, c³, …} in the SIS I₉ = <S₉, ⊨> in Figure 28. All strings of the form akbkck (k > 0) in S₉
have three bracketings with respect to every context-free grammar that generates S₉,
namely [ak [bk ck]], [[ak bk] ck] and [ak [bk] ck]. Each of those strings is also a disjoint sum
in three different ways in I₉: akbkck = ak ⋀ bkck = akbk ⋀ ck = ak ⋀ bk ⋀ ck for all k > 0. The
first two conjunctions correspond to the first two of the bracketings, but the third
conjunction does not correspond to the third bracketing. Instead it corresponds to the
'flat' bracketing [akbkck], which no context-free grammar can associate with the class of
strings contained within the bracketing, because the latter is a context-sensitive
language! On the other hand, the reason that there is no disjoint sum in I₉
corresponding to the bracketing [ak [bk] ck] is the same as the absence of such a sum in
I₈m: akck is not a substring of akbkck (k > 0).Since akck is a subsequence of akbkck for all

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 17

k, each string of the form akbkck is a four-way disjoint sum in the QIS I₉Q: three that
correspond to the three bracketings assigned by every context-free grammar to that
string, plus one that corresponds to the flat bracketing.

 ε

 a b c

a² ab ac bc b² c²

a³ abc b³ c³

…
Figure 28. I₉ and I₉Q for the inherently ambiguous context-free language S₉ = {ambncp: m, n, p ≥ 0, m

= n or m = p or n = p}

3.3. A context-free replacement for the regular language S₃ in I₃
In section 2, it was pointed out that because of the non-commutativity of concatenation,
the generator set for the regular language S₃ = {(a | b)ⁿ: n ≥ 0} in the SIS I₃ is identical to

the entire language, i.e. that no member of S₃ can be generated by conjunction.

However there is a context-free SIS I₃β = <S₃β, ⊨> in which S₃β is obtained by replacing

each member of S₃ that entails ba with a new member that entails ab and no longer
entails ba, so that disjunction and conjunction are total functions, and some members of
S₃β are disjoint or overlapping sums, including all those in S*′₁. To illustrate, compare

I₃ab₊ba = <S₃ab₊ba, ⊨> in Figure 29, in which S₃ab₊ba = {ε, a, b, ab ba}, with I₃βBab = <S₃βBab,

⊨> in Figure 30, in which S₃βBab = {ε, a, b, ab, Baβ}. In the latter, the string Baβ replaces

ba in the former, where B is a copy of b but distinct from it, and β = bb⁻¹, in which b⁻¹ is
the string inverse of b, so that β (the trace of b), like ε, has zero length. Disjunction and
conjunction are total functions in S₃βBab, and its generator set S*₃βBab, italicized in Figure

30, is a proper subset of S₃βBab, since ab is the disjoint sum of the pair a, b in I₃βBab,

whereas conjunction is not defined for a, b in I₃ab₊ba and the generator set is identical to
the entire set.

 ε

 a b

 ab ba

Figure 29. I₃ab₊ba, a finite substructure of I₃ showing failure of disjunction and conjunction

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 18

ε

 a b

 ab

 Babb-1 = Baβ
Figure 30. I₃βBab for the sublanguage S₃βBab of S₃β in which disjunction and conjunction are total

functions

The complete SIS I₃β = <S₃β, ⊨>, in which S₃β = {xβⁿbp: n, p ≥ 0, x ∈ {(Bjak)i: i, j ≥ 0, k > 0}
and #B = n} = {ε, a, b, a², ab, Baβ, b², a³, a²b, aBaβ, ab², Ba²β, Baβb, B²aβ², …}, is
defined recursively in (4).21 Recursive step (4.b.i) defines the language S₁ ⊊ S₃β, which

provides input to step (4.b.ii) for specifying the remaining members of S₃β, in which at
least one B precedes an a. These procedures together provide a recursive specification
of movement as copy and deletion, in which a single b on the right edge of a string,
immediately preceded by an a and zero or more traces, is deleted (i.e. replaced by a
trace) and a copy of b is inserted on the left edge of the string.22 For example, when
applied to ab, (4.b.ii) yields Baβ, corresponding to ba in S₃; and to aBaβb, it yields

BaBaβ² = (Ba)²β², corresponding to (ba)² in S₃.
4. Recursive definition of S₃β

a. Base case: ε ∈ S₃β.
b. Recursive steps:

i. If s ∈ S₃β, then as ∈ S₃β and sb ∈ S₃β.
ii. If t = xaβⁿb (j ≥ 0) ∈ S₃β, then u = Bxaβⁿ⁺¹ ∈ S₃β.

c. Closure: Nothing else is in S₃β.
Figure 31 diagrams I₃β = <S₃β, ⊨> for strings of length ≤ 4. The atomic chain

sublanguages of S₃β are the same as for S₃ and S₁, namely X₃βa = {am: m ≥ 0} and

X₃βb = {bn: n ≥ 0}, so that the generator set S*₃β of S₃β, italicized in Figure 31, includes

these as well as many other members of S₃β. The complement set S*′₃β = S₃β - S*₃β

consists of S*′₁ = {ambn: m, n > 0} ∪ {aBxβb} ∪ {amBxβbn: m > 1 and x ⊭ am, or n > 1},
where x ∈ S₃β, x ⊨ a, and x ⊭ b.

21 S₃β is not a regular language because the number of B's in each of its members must equal the number
of β's.
22 Discuss relevance to the trace theory of movement with REFs.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 19

Table 1 shows some of the properties of members of S₃β of length ≤ 4 excluding the two

atomic chain sublanguages. The second column provides the counterparts in S₃ of the

listed member of S₃β; and the third column the maximal conjuncts of which the member
is the sum and that are not substrings of each other. If two are listed, the member is the
disjoint or overlapping sum of those conjuncts; and if one is listed, it belongs to a non-
atomic chain sublanguage to which the member also belongs.

ε

 a b

 a² ab b²

a³ a²b Baβ ab² b³

a4 a³b Ba²β aBaβ a²b² Baβb ab³ b4

Ba³β a²Baβ aBa²β Ba²βb aBaβb B²aβ² Baβb²

 B²a²β² (Ba)²β² aB²aβ² B²aβ²b

 B³aβ³

…
Figure 31. I₃β for S₃β, a context-free variant of S₃ in which disjunction and conjunction are total

functions

S3β members of length
≤ 4 excluding T3βa, T3βb S3 counterparts Maximal independent

substrings
ab ab a, b
Baβ ba ab
a²b a²b a², ab
ab² ab² ab, b²
aBaβ aba Baβ
Ba²β ba² a²b
Baβb bab Baβ
B²aβ² b²a Baβ
a³b a³b a³, a²b
a²b² a²b² a²b, ab²
ab³ ab³ ab², b³
a²Baβ a²ba a², aBaβ
aBa²β aba² Ba²β
Ba³β ba³ a³b
aBaβb (ab)² aBaβ, Baβb
aB²aβ² ab²a B²aβ²
Ba²βb ba²b Ba²β
(Ba)²β² baba aBaβb

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 20

S3β members of length
≤ 4 excluding T3βa, T3βb S3 counterparts Maximal independent

substrings

B²a²β² b²a² Ba²βb
Baβb² bab² b², Baβb
B²aβ²b b²ab Baβb²
B³aβ³ b³a B²aβ²b

Table 1. Some properties of members of S₃β; italicized members are generators

3.4. How to determine whether a language in an SIS is context free
A defining property of a context-free language S is that every grammar G that generates
S is center embedding, i.e. has at least one non-terminal symbol A such that A ⇒ tAv in

G, where t and v are non-null terminal strings and A ⇒ u, where u is a terminal string. If
A is a start symbol of G, then the strings u and s = tuv are members of S, and if u is
non-null, u is a center substring of w, defined as in ().23 Thus center embedding can
give rise to center substrings in a language, but it is not the only source, since ab is a
center substring of a²b² in S₁, and S₁ is a regular language.

5. u ∈ S is a center substring of s ∈ S if and only if there are non-empty strings t, v
such that s = tuv there are no strings x, y such that s = xu or s = uy.24

A logical characterization of the requirement for a language S in an SIS to be context
free can be given using the notion of center substring degree, analogous to center
embedding degree. A string s ∈ S has center substring degree 1 (CS° 1) with u ∈ S if u
is a maximal center substring of s, i.e. if s = tuv, where t and v are non-null, and u is not
a substring of any other center substring of s. CS° is defined recursively in (6).

6. For all n > 0, s has CS° n+1 with u if s = twv where w ∈ S is a maximal center
substring of s and w has CS° n with u.

It now may be observed that S is a context-free language in an SIS I = <S, ⊨> if and
only if S contains a chain sublanguage X with no bound on CS° for members of X with
some y ∈ X. For example, the context-free language S₅ is identical to its atomic chain

sublanguage X₅ab, in which there is no bound on CS° for members of X₅ab with the atom

ab. In S₅₋₁, there is no bound on CS° for members of X₅₋₁a₁ = {aⁿbⁿ⁻¹: n > 0} ∪ {aⁿbⁿ:
n ≥ 0} with the string ab.25 In S₇, there is no bound on CS° for members of any chain
sublanguage with the atom ac or bd. On the other hand, while there is no bound on CS°
of strings of the form a+b+ with ab in the regular language S₁ as a whole, there is no

chain sublanguage X₁ of S₁ with that property.

23 If u in A ⇒ u is null, then take u to be tv and s to be t²v².
24 The requirement that there be no strings x, y such that s = xu or s = uy rules out, for example, b as a
center substring of b³.
25 Note that aⁿbⁿ → aⁿ⁺¹bⁿ = aⁿ⁺¹bⁿ, not aⁿ⁺¹, aⁿ+1b, …, nor aⁿ⁺¹bⁿ⁺¹, since none of the latter strings belong to

S, a fact that is critical to the construction of X₅₋₁a₁.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 21

4. The calculus of context-sensitive languages
This section describes logical structures for two types of well-known mildly context-
sensitive languages. REF needed First is I₁₁ = <S₁₁, ⊨> in Figure 32, in which S₁₁ is the
context-sensitive language {anbncn: n ≥ 0} = {ε, abc, a²b²c², a³b³c³, …}. Every non-empty
member of S₁₁ belongs to an atomic sublanguage, so is logically independent of every

other such member.26 Second is I₁₂ = <S₁₂, ⊨> in Figure 33, in which S₁₂ = {xy: x ∈ {ambn:

m, n ≥ 0}; y ∈ {cmdn: m, n ≥ 0}, the copy of x with c in place of a and d in place of b}.

X₁₂ac and X₁₂bd are atomic chain sublanguages of S₁₂; every other member of S₁₂
belongs to an atomic sublanguage. Like I₁₂ is I₁₃ = <S₁₃, ⊨> in Figure 34, in which S₁₃ =

{xy: x ∈ {(a | b)n: n ≥ 0}; y ∈ {(c | d)n: n ≥ 0}, the copy of x with c in place of a and d in
place of b}.

 ε abc a²b²c² a³b³c³ …

Figure 32. I₁₁ for the context-sensitive language S₁₁ = {anbncn: n ≥ 0}

ε

 ac bd

 a²c² abcd b²d²

a³c³ a²bc²d ab²cd² b³d³
…

Figure 33. I₁₂ for S₁₂ = {xy: x ∈ {ambn: m, n ≥ 0}; y ∈ {cmdn: m, n > 0}, the copy of x with c in place of a
and d in place of b}

ε

 ac bd

 a²c² abcd badc b²d²

a³c³ a²bc²d abacdc ab²cd² ba²dc² babdcd b²ad²c b³d³

…
Figure 34. I₁₃ for S₁₃ = {xy: x ∈ {(a | b)n: n > 0}; y ∈ {(c | d)n: n > 0}, the copy of x with c in place of a

and d in place of b}

These SISs for mildly context-sensitive languages all have unboundedly many members
that belong to atomic sublanguages, making the choice of SIS inappropriate for logical

26 The substring (solid) arcs connecting ε to other than its shortest superstring(s) have been omitted in
Figure 32 through Figure 34.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 22

investigation of their specific properties, but raising the possibility that it is a defining
feature of a significant subclass of context-sensitive languages.27

4.1. Sequence implication structures for context-sensitive languages
QISs provide richer and potentially more useful structures for the analysis of context-
sensitive languages. For example, the QIS I₁₁Q = <S₁₁, ⊨Q> in Figure 35, is isomorphic to

the SIS I₅ for the context-free language {anbn: n ≥ 0} in Figure 19.28 Moreover, the QIS

I₁₂Q = <S₁₂, ⊨Q> in Figure 36, is isomorphic to the SIS I₁ for the regular language {ambn:

m, n ≥ 0} in Figure 3.29 The generator set for S₁₂ in I₁₂Q is the context-free language

S*₁₂Q = {amcm: m > 0} ∪ {bndn: n > 0}, italicized in Figure 36, and its complement the

context-sensitive language S*′₁₂Q = {xy: x ∈ {ambn: m, n > 0}; y ∈ {cmdn: m, n > 0}, the

copy of x with c in place of a and d in place of b}. Finally, the QIS I₁₃Q = <S₁₃, ⊨Q> in

Figure 37, is isomorphic to the SIS I₃ for the regular language S₃ = {(a | b)n: n ≥ 0} in

Figure 6. The generator set for S₁₃ in I₁₃Q is identical to S₁₃ for the same reason that the

generator set for S₃ is identical to S₃ in I₃.

Other applications of the use of QIS to the study of context-sensitive languages can be
made, such as the investigation of inherent ambiguity in languages like {ambncpdq: m, n,
p, q ≥ 0; m = n = q or m = p = q}.

 ε abc a²b²c² a³b³c³ …

Figure 35. I₁₁ and I₁₁Q for S₁₁; cf. Figure 19

ε

 ac bd

 a²c² abcd b²d²

a³c³ a²bc²d ab²cd² b³d³
…

Figure 36. I₁₂ and I₁₂Q for S₁₂; cf. Figure 3 and Figure 24

27 Not all context-sensitive languages have this property, for example {aⁿbⁿ²: n > 0} = {ab, a²b⁴, a³b⁹, …},

whose SIS is isomorphic to I₅.
28 For example a²b²c² ⊨Q abc in I₈Q, since abc can be analyzed as r₁r2 where r₁ = ab, r2 = c, and a²b²c² as

q0r₁q₁r2q2 where q0 = a, q₁ = b and q2 = c, so that q0q₁q2 = abc ∈ S₈.
29 For example abcd ⊨Q ac in I₉Q, since ac can be analyzed as r₁r2 where r₁ = a, r2 = c, and abcd as

q0r₁q₁r2q2 where q0 = ε, q₁ = b and q2 = d, so that q0q₁q2 = bd ∈ S₉.

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 23

ε

 ac bd

 a²c² abcd badc b²d²

a³c³ a²bc²d abacdc ab²cd² ba²dc² babdcd b²ad²c b³d³

…
Figure 37. I₁₃ and I₁₃Q for S₁₃; cf. Figure 6 and Figure 25

4.2. Context-sensitive replacements for the context-free language
S₇Q in the QIS I₇Q and context-sensitive language S₁₃Q in the QIS I₁₃Q
In section 3.1, it was pointed out that because of the non-commutativity of
concatenation, the generator set for the context-free mirror image language S₇ = {xy: x ∈

{(a | b)n: n ≥ 0}, y ∈ {(c | d)n: n ≥ 0}, the mirror image of x with c in place of a and d in

place of b} in the QIS I₇Q is identical to the entire language. However the context-

sensitive QIS I₇βQ = <S₇β, ⊨Q> in which S₇β is obtained by replacing each member of S₇
that entails bacd with a new member that entails abdc and no longer entails bacd,
analogous to the definition of the SIS I₃β, and with comparable results. Figure 38

represents the finite substructure I₇βQBaβCdγ = <S₇βBaβCdγ, ⊨Q> of I₇βQ, in which S₇βBaβCdγ =

{ε, ac, bd, abdc, BaβCdγ} is the sublanguage of the string BaβCdγ in S₇β, where B and β

are as in S₃β, C is a copy of c, and γ = cc⁻¹ (the trace of c). The language S₇β is context

sensitive, as is shown by the fact that the intersection of S₇β with the regular language

{BiaβjCkdγm: i, j, k, m≥ 0} is the context-sensitive language {BⁿaβⁿCⁿdγⁿ: n ≥ 0}, and that
context-sensitive languages are closed under intersection with regular languages. A
similar result is obtained by replacing the QIS I₁₃Q by I₁₃βQ = <S₁₃β, ⊨Q>, in which the

context-sensitive language S₁₃β is obtained by replacing each member of S₁₃ that entails
badc with a new member that entails abcd and no longer entails bacd, analogous to the
definition of the SIS I₇β, and with comparable results. Figure 39 represents the finite

substructure I₁₃βQBaβDcδ = <S₁₃βBaβDcδ, ⊨Q> of I₁₃βQ, in which S₁₃βBaβDcδ = {ε, ac, bd, abdc,

BaβDcδ} is the sublanguage of the string BaβDcδ in S₁₃β, where B and β are as in S₃β, D

is a copy of d, and δ = dd⁻¹ (the trace of d).

D. Terence Langendoen, The calculus of strings DRAFT OF 2010-03-14 24

ε

 ac bd

 abdc

 BaβCdγ
Figure 38. I₇βQBaβCdγ for the sublanguage S₇βBaβCdγ of S₇β

ε

 ac bd

 abcd

 BaβDcδ
Figure 39. I₁₃βQBaβDcδ for the sublanguage S₁₃βBaβDcδ of S₁₃β

5. Applications for the study of natural languages
Not yet written.

References
REFs needed for trace theory of movement and for mildly context-sensitive languages.
Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert R.

Bush and Eugene Galanter, eds., Handbook of Mathematical Psychology, vol. II, pp.
323-418. New York: John Wiley and Sons.

Ferré, Sébastien. 2007. The efficient computation of complete and concise substring
scales with suffix trees. In S. O. Kuznetsov and S. Schmidt, eds., Formal Concept
Analysis (Lecture Notes in Computer Science 4390), pp. 98-113. Berlin: Springer.

Koslow, Arnold. 1992. A Structuralist Theory of Logic. Cambridge: Cambridge University
Press.

Langendoen, D. Terence. 2002. Sequence structure. In Bruce Nevin & Stephen M.
Johnson, eds., The Legacy of Zellig Harris: Language and Information into the 21st
Century, vol. 2: Computability of Language and Computer Applications, pp. 61-75.
Amsterdam: John Benjamins.

Leonard, Henry and Nelson Goodman. 1938. The calculus of individuals. Journal of
Symbolic Logic.

Parikh, Rohit. 1961. Language generating devices. Research Laboratory of Electronics
Quarterly Progress Report 60: 199-212.

	D. Terence Langendoen
	University of Arizona
	Abstract goes here.
	1. String and sequence implication structures
	2. The calculus of regular languages
	2.1. The calculus of infinite regular languages
	2.2. The calculus of finite languages

	3. The calculus of context-free languages
	3.1. Sequence implication structures for context-free languages
	3.2. The calculus of inherently ambiguous context-free languages
	3.3. A context-free replacement for the regular language S₃ in I₃
	3.4. How to determine whether a language in an SIS is context free

	4. The calculus of context-sensitive languages
	4.1. Sequence implication structures for context-sensitive languages
	4.2. Context-sensitive replacements for the context-free language S₇Q in the QIS I₇Q and context-sensitive language S₁₃Q in the QIS I₁₃Q

	5. Applications for the study of natural languages
	References

