Quantifiers

- Not all noun phrases (NPs) are (by nature) directly referential like names
- **Quantifiers**: “*something to do with indicating the quantity of something*”
- **Examples**:
 - every child
 - nobody
 - two dogs
 - several animals
 - most people

`nobody has seen a unicorn`

means roughly (*Prolog-style*):

```prolog
?- setof(X,(person(X), seen(X,Y), unicorn(Y)),Set),cardinality(Set,0).
```
Quantifiers

- Database

nobody has seen a unicorn
 means roughly (Prolog-style):
 ?- setof(X,(person(X), seen(X,Y), unicorn(Y)),Set),cardinality(Set,0).

- setof vs. findall (recall last lecture)

Fix:
Quantifiers

• Semantic compositionality:
 – *elements of a sentence combine in piecewise fashion to form an overall (propositional) meaning for the sentence*

• Example:
 – (4) Every baby cried
 – **Word** **Meaning**
 – cried cried(X).
 – baby baby(X).
 – **every** ?
 – every baby cried *proposition* (True/False)
 – *that can be evaluated for a given situation*
Quantifiers

- **Scenario (Possible World):**
 - Suppose there are three babies...
 - baby(noah).
 - baby(merrill).
 - baby(dani).
 - All three cried
 - cried(noah).
 - cried(merrill).
 - cried(dani).
 - Only Dani jumped
 - jumped(dani).
 - Noah and Dani swam
 - swam(noah).
 - swam(dani).

<table>
<thead>
<tr>
<th>(6)</th>
<th>every baby</th>
<th>exactly one baby</th>
<th>most babies</th>
</tr>
</thead>
<tbody>
<tr>
<td>cried</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>jumped</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>swam</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

- **think of quantifiers as “properties-of-properties”**
- every_baby(P) is a proposition
- P: property
- every_baby(P) **true** for P=cried
- every_baby(P) **false** for P=jumped and P=swam
Quantifiers

• think of quantifiers as “properties-of-properties”
 – every_baby(P) true for P=cried
 – every_baby(P) false for P=jumped and P=swam

• Generalized Quantifiers
 – the idea that quantified NPs represent sets of sets
 – this idea is not as weird as it sounds
 – we know
 • every_baby(P) is true for certain properties
 – view
 • every_baby(P) = set of all properties P for which this is true
 – in our scenario
 • every_baby(P) = {cried}
 – we know cried can also be view as a set itself
 • cried = set of individuals who cried
 – in our scenario
 • cried = {noah, merrill, dani}
Quantifiers

• how do we define the expression every_baby(P)?
• (Montague-style)
 every_baby(P) is shorthand for
 – for all individuals X, baby(X) -> P(X)
 – ->: if-then (implication : logic symbol)
• written another way
 (lambda calculus-style):
 – \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]] \)
 – \(\forall: \text{for all} \) (universal quantifier: logic symbol)

• Example:
 – every baby walks
 • for all individuals X, baby(X) -> walks(X)
 more formally
 – \([_{NP} \text{every baby}] [_{VP} \text{walks}]\)
 • \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]](\text{walks})\)
 • \(\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)]\)
Quantifiers

• **how do we define this Prolog-style?**

 • Example:
 - every baby walks
 - \[NP\] every baby \[VP\] walks
 - \(\lambda P. [\forall X (\text{baby}(X) \rightarrow P(X))] (\text{walks})\)
 - \(\forall X (\text{baby}(X) \rightarrow \text{walks}(X))\)

 • **Possible World (Prolog database):**
 - \(-\text{ dynamic baby/1.} (\text{allows us to modify the baby database online})\)
 - baby(a). baby(b).
 - walks(a). walks(b). walks(c).
 - individual(a). individual(b). individual(c).

 • **What kind of query would you write?**

 • **One Possible Query (every means there are no exceptions):**
 - \(?- \\text{ \\+ (baby(X), \\+ walks(X))}. (\text{NOTE: may need a space between \\+ and (here)}
 - Yes (TRUE)
 - \(?- \text{ baby(X), \\+ walks(X)}.\)
 - No
 - \(?- \text{ assert(baby(d))}.\)
 - \(?- \text{ baby(X), \\+ walks(X)}.\)
 - \(X = d ;\)
 - Yes

Using no exception idea that \(\forall X P(X)\) is the same as \(-\exists X \neg P(X)\)
\(\exists = \text{“there exists” (quantifier)} (implicitly: all Prolog variables are existentially quantified variables)
Recall: *Truth Tables*

- De Morgan’s Rule
- \(\neg(P \lor Q) = \neg P \land \neg Q \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(\neg(P \lor Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\neg P)</th>
<th>(\land)</th>
<th>(\neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

\(\neg P \land \neg Q = T\) only when both \(P\) and \(Q\) are \(F\)

Hence, \(\neg(P \lor Q)\) is equivalent to \(\neg P \land \neg Q\)
Conversion into Prolog

Note:
\+ (baby(X), \+walks(X)) is Prolog for ∀X (baby(X) -> walks(X))

Steps:
- ∀X (baby(X) -> walks(X))
- ∀X (¬baby(X) v walks(X))
 • (since P->Q = ¬PvQ, see truth tables from two lectures ago)
- ¬∃X ¬(¬baby(X) v walks(X))
 • (since ∀X P(X) = ¬∃X ¬P(X), no exception idea)
- ¬∃X (baby(X) ∧ ¬walks(X))
 • (by De Morgan’s rule, see truth table from last slide)
- ¬(baby(X) ∧ ¬walks(X))
 • (can drop ∃X since all Prolog variables are basically existentially quantified variables)
- \+ (baby(X) ∧ \+walks(X))
 • (\+ = Prolog negation symbol)
- \+ (baby(X), \+walks(X))
 • (, = Prolog conjunction symbol)
Quantifiers

• how do we define this Prolog-style?

• Example:
 – every baby walks
 – \([_{\text{NP}} \text{every baby}] \ [_{\text{VP}} \text{walks}]\)
 • \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]](\text{walks})\)
 • \(\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)]\)

• Another situation (Prolog database):
 – :- dynamic baby/1.
 – :- dynamic walks/1.

• Does \(?- \ + \ (\text{baby}(X), \ + \ \text{walks}(X)).\) still work?

• Yes because
 – \(?- \text{baby}(X), \ + \ \text{walks}(X).\)
 – No
cannot be satisfied
Quantifiers

- **how do we define the expression every_baby(P)?**
- (Montague-style)
 - every_baby(P) is shorthand for
 - $\lambda P. [\forall X. \text{baby}(X) \rightarrow P(X)]$

- (Barwise & Cooper-style)
 - think directly in terms of sets
 - *leads to another way of expressing the Prolog query*

- **Example**: every baby walks
 - $\{X: \text{baby}(X)\}$ *set of all X such that baby(X) is true*
 - $\{X: \text{walks}(X)\}$ *set of all X such that walks(X) is true*

- **Subset relation (⊆)**
 - $\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\}$ *the “baby” set must be a subset of the “walks” set*
Quantifiers

(Barwise & Cooper-style)
• think directly in terms of sets
• leads to another way of expressing the Prolog query

• Example: every baby walks
• \{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \text{ the “baby” set must be a subset of the “walks” set}

• How to express this as a Prolog query?

• Queries:
• \texttt{?- setof(X,baby(X),L1).} \textit{L1 is the set of all babies in the database}
• \texttt{?- setof(X,walks(X),L2).} \textit{L2 is the set of all individuals who walk}

 Need a Prolog definition of the subset relation. This one, for example:
\begin{verbatim}
subset([],_).
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_]).
member(X,[_|L]) :- member(X,L).
\end{verbatim}
Quan%fiers

• **Example:** every baby walks

 \(\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \)

 the “baby” set must be a subset of the “walks” set

• **Assume the following definitions are part of the database:**

 \[
 \begin{align*}
 \text{subset}([\],_). \\
 \text{subset}([X|_ _],L) :& - \text{member}(X,L). \\
 \text{member}(X,[X|_ _]) :& - \text{member}(X,L). \\
 \text{member}(X,[__L]) :& - \text{member}(X,L).
 \end{align*}
 \]

• **Prolog Query:**

 • ?- setof(X,baby(X),L1), setof(X,walks(X),L2), subset(L1,L2).

 • **True for world:**

 - baby(a).
 - baby(b).
 - walks(a).
 - walks(b).
 - walks(c).

 L1 = [a,b]
 L2 = [a,b,c]
 ?- subset(L1,L2) is true

 • **False for world:**

 - baby(a).
 - baby(b).
 - baby(d).
 - walks(a).
 - walks(b).
 - walks(c).

 L1 = [a,b,d]
 L2 = [a,b,c]
 ?- subset(L1,L2) is false
Quantifiers

• **Example:** *every baby walks*
 \[\forall X \text{ (baby}(X) \rightarrow \text{walks}(X)) \]

• (Montague-style) \[\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \]

• (Barwise & Cooper-style) \[\{X: \text{baby}(X)\} \subseteq \{X: \text{P}(X)\} \]

• **how do we define every_baby(P)?**

 • (Montague-style) \[\lambda P. [\forall X \text{ (baby}(X) \rightarrow P(X))] \]

 • (Barwise & Cooper-style) \[\{X: \text{baby}(X)\} \subseteq \{X: \text{P}(X)\} \]

• **how do we define every?**

 • (Montague-style) \[\lambda P_1. [\lambda P_2. [\forall X \text{ (P}_1(X) \rightarrow P_2(X))]] \]

 • (Barwise & Cooper-style) \[\{X: P_1(X)\} \subseteq \{X: P_2(X)\} \]
Quantifiers

• how do we define the expression *every*?
• (Montague-style) \(\lambda P_1. [\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]] \)

• *Let’s look at computation in the lambda calculus...*
• **Example:** *every man likes John*
 – **Word** *Expression*
 – *every* \(\lambda P_1. [\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]] \)
 – *man* man
 – *likes* \(\lambda Y. [\lambda X. [X \text{ likes } Y]] \)
 – *John* John
• **Syntax:** \([S [NP [Q every][N man]][VP [V likes][NP John]]]]\)
Quantifiers

• **Example:** \(\text{[S [NP [Q every][N man]][VP [V likes][NP John]]]}\)

 - **Word**
 - *every* \(\lambda P_1.\lambda P_2.[\forall X (P_1(X) \rightarrow P_2(X))]\)
 - *man* \(\text{man}\)
 - *likes* \(\lambda Y.\lambda X.[X \text{ likes } Y]\)
 - *John* \(\text{John}\)

• **Logic steps:**

 \[
 \begin{align*}
 &\{Q \text{ every}\}[\text{N man}] \quad \lambda P_1.\lambda P_2.[\forall X (P_1(X) \rightarrow P_2(X))](\text{man})\\
 &\{Q \text{ every}\}[\text{N man}] \quad \lambda P_2.[\forall X (\text{man}(X) \rightarrow P_2(X))]\\
 &\{VP [V \text{ likes}]\}[\text{NP John}] \quad \lambda Y.\lambda X.[X \text{ likes } Y](\text{John})\\
 &\{VP [V \text{ likes}]\}[\text{NP John}] \quad \lambda X.[X \text{ likes } \text{John}]\\
 &\{S [NP [Q \text{ every}]\}[\text{N man}]\}[\text{VP [V \text{ likes}]\}[\text{NP John}]])\\
 &\quad \lambda P_2.[\forall X (\text{man}(X) \rightarrow P_2(X))](\lambda X.[X \text{ likes } \text{John}])\\
 &\quad \forall X (\text{man}(X) \rightarrow \lambda X.[X \text{ likes } \text{John}](X))\\
 &\quad \forall X (\text{man}(X) \rightarrow [X \text{ likes } \text{John}])
 \end{align*}
\]
Quantifiers

• Prolog is kinda first order logic ...
 – **no** quantifier variables
Quanifiers

• Example:
 – $\lambda P_1.[\lambda P_2.[\forall X (P_1(X) \rightarrow P_2(X))]]$
 lambda(P1,lambda(P2,\+ (P1(X), \+ P2(X))))

• Example:
 – $\{X: P(X)\}$
 setof(X,P(X),Set)
Quantifiers

- Example:
 - $\{X: P(X)\}$
 - Illegal: $\text{setof}(X, P(X), \text{Set})$
 - Alternate: $\text{setof}(X, \text{call}(P, X), \text{Set})$

Database

```
1 person(a).
2 person(b).
3 person(c).
?- call(person, X).
   X = a ;
?- P = person, setof(X, call(P, X), Set).
   P = person,
   Set = [a, b, c].
```

`call(:Goal)`
Invoke `Goal` as a goal. Note that clauses may have variables as subclauses, which is identical to `call/1`.

`call(:Goal, +ExtraArg1, ...)`
Append `ExtraArg1, ExtraArg2, ...` to the argument list of `Goal` and call the result. For example, `call(plus(1), 2, X)` will call `plus(1, 2, X)`, binding `X` to 3.

The `call/[2..]` construct is handled by the compiler, which implies that redefinition as a predicate has no effect. The predicates `call/[2-6]` are defined as real predicates, so they can be handled by interpreted code.
Quantifiers

• Example:
 \[\lambda P_1.[\lambda P_2.[\forall X. (P_1(X) \rightarrow P_2(X))] \]

 Illegal: \[\text{lambda}(P_1, \text{lambda}(P_2, (\text{\texttt{\textbackslash +}} (P_1(X), \text{\texttt{\textbackslash +}} P_2(X)))))) \]

 Alternate: \[\text{lambda}(P_1, \text{lambda}(P_2, (\text{\texttt{\textbackslash +}} (\text{call}(P_1,X), \text{\texttt{\textbackslash +}} \text{call}(P_2,X)))))) \]
Quantifiers

Part 3: Coordination

• Extend the grammars to handle
 – Every man and every woman likes John
Other Quantifiers

- Other quantifiers can also be expressed using set relations between two predicates:

 Example:

 \[\text{no}: \{X: P_1(X)\} \cap \{Y: P_2(Y)\} = \emptyset \]

 \(\cap \) = set intersection

 \(\emptyset \) = empty set

 \textit{no man smokes}

 \[\{X: \text{man}(X)\} \cap \{Y: \text{smokes}(Y)\} = \emptyset \]

 should evaluate to true for all possible worlds where there is no overlap between men and smokers
Other Quantifiers

- Other quantifiers can also be expressed using set relations between two predicates:

 Example:

 \[
 \text{some: } \{X: P_1(X)\} \cap \{Y: P_2(Y)\} \neq \emptyset \\
 \cap = \text{set intersection} \\
 \emptyset = \text{empty set}
 \]

 \text{some men smoke}

 \[
 \{X: \text{man}(X)\} \cap \{Y: \text{smokes}(Y)\} \neq \emptyset
 \]
Names as Generalized Quantifiers

- we’ve mentioned that names directly refer

 here is another idea...

- **Conjunction**
 - $X \text{ and } Y$
 - both X and Y have to be of the same type
 - *in particular,* semantically...
 - we want them to have the same semantic type

- **what is the semantic type of every baby?**

Example

- every baby and John likes ice cream
 - $\forall x (\text{baby}(x)) \land \forall y (\text{likes}(y, \text{ice cream}))$

- every baby likes ice cream
 - $\forall x (\text{baby}(x)) \subseteq \forall y (\text{likes}(y, \text{ice cream}))$

- John likes ice cream
 - $\exists y (\text{likes}(y, \text{ice cream}))$

- want everything to be a set (to be consistent)
 - i.e. want to state something like
 - $\forall x (\text{baby}(x)) \cup \forall y (\text{john}(y)) \subseteq \forall y (\text{likes}(y, \text{ice cream}))$

- note: set union (\cup) is the translation of “and”
Downwards and Upwards Entailment (DE & UE)

- **Quantifier every** has semantics
 - \(\{X: \text{P}_1(X)\} \subseteq \{Y: \text{P}_2(Y)\} \)
 - e.g. every woman likes ice cream
 - \(\{X: \text{woman}(X)\} \subseteq \{Y: \text{likes}(Y,\text{ice_cream})\} \)

- **Every** is DE for \(\text{P}_1 \) and UE for \(\text{P}_2 \)
- Examples:
 - (25) a. Every dog barks
 - b. Every Keeshond barks (valid)
 - c. Every animal barks (invalid)
 - semantically, “Keeshond” is a sub-property or subset with respect to the set “dog”
Downwards and Upwards Entailment (DE & UE)

• Quantifier **every** has semantics
 – \(\{X: P_1(X)\} \subseteq \{Y: P_2(Y)\} \)
 – e.g. every woman likes ice cream
 – \(\{X: \text{woman}(X)\} \subseteq \{Y: \text{likes}(Y, \text{ice_cream})\} \)
• **Every** is DE for \(P_1 \) and UE for \(P_2 \)
• Examples:
 • (25) a. Every dog barks
 • d. **Every dog barks loudly** (invalid)
 • c. Every dog makes noise (valid)
 – semantically, “barks loudly” is a subset with respect to the set “barks”, which (in turn) is a subset of the set “makes noise”
Parse Methods

- **Basic Prolog grammar system:**
 - we've used Prolog's default computation rule to parse context-free grammars
 - This strategy is known as a top-down, depth-first search strategy
 - *There are many other methods ...*

problems
- left-recursion
 - gives termination problems
- no bottom-up filtering
 - *inefficient*
- left-corner idea
Top-Down Parsing with Left-Corner Filtering

- **no bottom-up filtering**
 - left-corner idea
 - eliminate unnecessary top-down search
 - reduce the number of choice points (*amount of branching*)

- **example**
 - does this flight include a meal?

- **computation:**
 1. $s \rightarrow np, \ vp.$
 2. $s \rightarrow aux, \ np, \ vp.$
 3. $s \rightarrow vp.$
 - left-corner idea rules out 1 and 3
Left Corner Parsing

- need bottom-up filtering
 - filter top-down rule expansion using bottom-up information
 - current input is the bottom-up information
 - left-corner idea
- example
 - s(s(NP,VP)) --> np(NP), vp(VP).
 - what terminals can be used to begin this phrase?
 - answer: whatever can begin NP
 - np(np(D,N)) --> det(D), nominal(N).
 - np(np(PN)) --> propernoun(PN).
 - answer: whatever can begin Det or ProperNoun
 - det(det(that)) --> [that].
 - det(det(this)) --> [this].
 - det(det(a)) --> [a].
 - propernoun(propn(houston)) --> [houston].
 - propernoun(propn(twa)) --> [twa].
 - answer:
 - {that,this,a,houston,twa} "Left Corner"
Left Corner Parsing

- example
 - does this flight include a meal?

- computation
 1. \(s(s(NP,VP)) \rightarrow np(NP), vp(VP) \). LC: \{that, this, a, houston, twa\}
 2. \(s(s(Aux,NP,VP)) \rightarrow aux(Aux), np(NP), vp(VP) \). LC: \{does\}
 3. \(s(s(VP)) \rightarrow vp(VP) \). LC: \{book, include, prefer\}
 - only rule 2 is compatible with the input
 - match first input terminal against left-corner (LC) set for each possible matching rule
 - left-corner idea prunes away or rules out options 1 and 3
Left Corner Parsing

- **DCG Rules**
 1. $s(s(NP,VP)) \rightarrow np(NP), vp(VP)$. LC: \{that, this, a, houston, twa\}
 2. $s(s(Aux,NP,VP)) \rightarrow aux(Aux), np(NP), vp(VP)$. LC: \{does\}
 3. $s(s(VP)) \rightarrow vp(VP)$. LC: \{book, include, prefer\}

- **left-corner database facts**
 - `lc (rule#, [word|_], [word|_]).$
 - $lc(1, [that|L], [that|L])$. $lc(2, [does|L], [does|L])$. $lc(3, [book|L], [book|L])$. $lc(1, [a|L], [a|L])$. $lc(3, [include|L], [include|L])$. $lc(1, [houston|L], [houston|L])$. $lc(3, [prefer|L], [prefer|L])$. $lc(1, [twa|L], [twa|L])$.

- **rewrite Prolog rules to check input against lc**
 1. $s(s(NP,VP)) \rightarrow lc(1), np(NP), vp(VP)$.
 2. $s(s(Aux,NP,VP)) \rightarrow lc(2), aux(Aux), np(NP), vp(VP)$.
 3. $s(s(VP)) \rightarrow lc(3), vp(VP)$.
Lev	

 Corner	

 Parsing

• left-corner database facts
 - \% lc(rule#,[word|_],[word|_]).
 - lc(1,[that|L],[that|L]).
 - lc(2,[does|L],[does|L]).
 - lc(1,this|L],[this|L]).
 - lc(3,[book|L],[book|L]).
 - lc(1,[a|L],[a|L]).
 - lc(3,[include|L],[include|L]).
 - lc(1,[houston|L],[houston|L]).
 - lc(3,[prefer|L],[prefer|L]).
 - lc(1,[twa|L],[twa|L]).

• rewrite DCG rules to check input against lc/3
 1. s(s(NP,VP)) --> lc(1), np(NP), vp(VP).
 2. s(s(Aux,NP,VP)) --> lc(2), aux(Aux), np(NP), vp(VP).
 3. s(s(VP)) --> lc(3), vp(VP).

• DCG rules are translated into underlying Prolog rules:
 1. s(s(A,B), C, D) :- lc(1, C, E), np(A, E, F), vp(B, F, D).
 2. s(s(A,B,C), D, E) :- lc(2, D, F), aux(A, F, G), np(B, G, H), vp(C, H, E).
 3. s(s(A), B, C) :- lc(3, B, D), vp(A, D, C).
Left Corner Parsing

- **Summary:**
 - Given a context-free DCG
 - Generate left-corner database facts
 - `lc(rule#, [word|_], [word|_])`.
 - Rewrite DCG rules to check input against `lc`
 - `s(s(NP,VP)) --> lc(1), np(NP), vp(VP)`.
 - DCG rules are translated into underlying Prolog rules:
 - `s(s(A,B), C, D) :- lc(1, C, E), np(A, E, F), vp(B, F, D)`.

- **Note:**
 - This process can be done automatically (by program)
 - **not all rules need be rewritten**
 - **lexicon rules are direct left-corner rules**
 - **no filtering is necessary**
 - `det(det(a)) --> [a].`
 - `noun(noun(book)) --> [book].`
 - **i.e. no need to call lc as in**
 - `det(det(a)) --> lc(11), [a].`
 - `noun(noun(book)) --> lc(12), [book].`
Bottom-Up Parsing

• *LR(0)* parsing
 – An example of **bottom-up** tabular parsing

– Similar to the **top-down** Earley algorithm described in the textbook in that it uses the idea of dotted rules
Tabular Parsing

- e.g. LR(k) (Knuth, 1960)
 - invented for efficient parsing of programming languages
 - disadvantage: a potentially huge number of states can be generated when the number of rules in the grammar is large
 - can be applied to natural languages (Tomita 1985)
 - build a Finite State Automaton (FSA) from the grammar rules, then add a stack
- tables encode the grammar (FSA)
 - grammar rules are compiled
 - no longer interpret the grammar rules directly
- Parser = Table + Push-down Stack
 - table entries contain instruction(s) that tell what to do at a given state
 - possibly factoring in lookahead
 - stack data structure deals with maintaining the history of computation and recursion
Tabular Parsing

- **Shift-Reduce Parsing**
 - example
- **LR(0)**
 - left to right
 - **bottom-up**
 - (0) no lookahead (input word)
- **LR actions**
 - **Shift**: read an input word
 » i.e. advance current input word pointer to the next word
 - **Reduce**: complete a nonterminal
 » i.e. complete parsing a grammar rule
 - **Accept**: complete the parse
 » i.e. start symbol (e.g. S) derives the terminal string
Tabular Parsing

• **LR(0) Parsing**
 – \(L(G) = \text{LR}(0) \)
 • *i.e. the language generated by grammar} \(G \) * is \(\text{LR}(0) \)
 if there is a unique instruction per state
 (or no instruction = error state)
 LR(0) is a proper subset of context-free languages
 – **note**
 • human language tends to be ambiguous
 • there are likely to be multiple or conflicting actions per state
 • *can let Prolog’s computation rule handle it*
 – *i.e. use Prolog backtracking*
Tabular Parsing

• **Dotted Rule Notation**
 - “dot” *used to indicate the progress of a parse through a phrase structure rule*
 - **examples**
 • $\text{vp} \rightarrow \text{v} \cdot \text{np}$
 means we’ve seen v and predict np
 • $\text{np} \rightarrow \cdot \text{d np}$
 means we’re predicting a d (followed by np)
 • $\text{vp} \rightarrow \text{vp pp}$. mean we’ve completed a vp

• **state**
 - a set of dotted rules encodes the state of the parse

• **kernel**
 - $\text{vp} \rightarrow \text{v} \cdot \text{np}$
 - $\text{vp} \rightarrow \text{v} \cdot$

• **completion** (of predict NP)
 - $\text{np} \rightarrow \cdot \text{d n}$
 - $\text{np} \rightarrow \cdot \text{n}$
 - $\text{np} \rightarrow \cdot \text{np cp}$
Tabular Parsing

- compute possible states by advancing the dot
 - example:
 - (Assume d is next in the input)
 - $vp \rightarrow v . np$
 - $vp \rightarrow v.$ *(eliminated)*
 - $np \rightarrow d . n$
 - $np \rightarrow . n$ *(eliminated)*
 - $np \rightarrow . np cp$
Tabular Parsing

- **Dotted rules**
 - example
 - State 0:
 - s \rightarrow . np vp
 - np \rightarrow .d np
 - np \rightarrow .n
 - np \rightarrow.np pp
 - possible actions
 - **shift** d and go to new state
 - **shift** n and go to new state

- **Creating new states**
Tabular Parsing

- **State 1**: Shift N, goto State 2

 - S -> . NP VP
 - NP -> . D N
 - NP -> . N
 - NP -> . NP PP

 - NP -> D . N
 - NP -> N .

- State 0

- State 1

- State 2

- State 3
Tabular Parsing

- **Shift**
 - take input word, and
 - place on stack

- **state 3**
Tabular Parsing

- **State 2**: Reduce action NP -> N.

```
S -> . NP VP
NP -> . D N
NP -> . N
NP -> . NP PP

NP -> D N .

State 0

State 1

NP -> D . N

State 3

NP -> N .

State 2
```
Tabular Parsing

• **Reduce** NP -> N .
 – pop \([_N{\text{milk}}]\) off the stack, and
 – replace with \([_{NP}[_N{\text{milk}}]]\) on stack

```
[_{V \text{ is } ...}]
\text{Input}
```

• State 2

```
[_{NP \text{ milk}}]
\text{Stack}
```

[_{N \text{ milk}}]
Tabular Parsing

- **State 3**: Reduce NP -> D N .

S -> . NP VP
NP -> . D N
NP -> . N
NP -> . NP PP
Tabular Parsing

- **Reduce** $NP \rightarrow D N$.
 - pop $[N \text{ man}]$ and $[D \text{ a}]$ off the stack
 - replace with $[NP[D \text{ a}][N \text{ man}]]$

```
[\_N \text{ man}] \_{D \text{ a}]}[\_N \text{ man}]
```

```
Input

[\_V \text{ hit} ] ...
```

```
[\_N \text{ man}]
```

```
Stack

[\_D \text{ a} ]
```
Tabular Parsing

- **State 0**: Transition NP

 - **State 0**: $S \rightarrow \cdot \ NP \ VP$
 - $NP \rightarrow \cdot \ D \ N$
 - $NP \rightarrow \cdot \ N$
 - $NP \rightarrow \cdot \ NP \ PP$

 - **State 2**: $NP \rightarrow \cdot \ N$

 - **State 4**: $S \rightarrow \ NP \ . \ VP$
 - $NP \rightarrow \ NP \ . \ PP$
 - $VP \rightarrow \cdot \ V \ NP$
 - $VP \rightarrow \cdot \ V$
 - $VP \rightarrow \cdot \ VP \ PP$
 - $PP \rightarrow \cdot \ P \ NP$
Tabular Parsing

• for both states 2 and 3
 – NP -> N. (reduce NP -> N)
 – NP -> D N. (reduce NP -> D N)

• after Reduce NP operation
 – **Goto** state 4

• notes:
 – states are unique
 – grammar is finite
 – procedure generating states must terminate since the number of possible dotted rules
Tabular Parsing

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Shift D</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Shift N</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Shift N</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Reduce NP -> N</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Reduce NP -> D N</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Tabular Parsing

- **Observations**
 - *table is sparse*
 - example
 - State 0, Input: $[V ..]$
 - parse fails immediately
 - *in a given state, input may be irrelevant*
 - example
 - State 2 (there is no shift operation)
 - *there may be action conflicts*
 - example
 - State 1: shift D, shift N

- **more interesting cases**
 - shift-reduce and reduce-reduce conflicts
Tabular Parsing

• **finishing up**
 – an extra initial rule is usually added to the grammar
 – \(SS \rightarrow S \ . \ $ \)
 • \(SS \) = start symbol
 • \$ = end of sentence marker

– **input:**
 • *milk is good for you $*

– **accept action**
 • discard $ from input
 • return element at the top of stack as the parse tree
LR Parsing in Prolog

• Recap
 – finite state machine
 • each state represents a set of dotted rules
 – example
 » S --> . NP VP
 » NP --> . D N
 » NP --> . N
 » NP --> . NP PP
 • we transition, i.e. move, from state to state by advancing the “dot” over terminal and nonterminal symbols
Build Actions

• two main actions
 – *Shift*
 • move a word from the input onto the stack
 • Example:
 – NP --> D N

 – *Reduce*
 • build a new constituent
 • Example:
 – NP --> D N.
• **Example:**
 - `?- parse([john,saw,the,man,with,a,telescope],X).`
 - `X =
 s(np(n(john)),vp(v(saw),np(np(d(the),n(man)),pp(p(with),np(d(a),n(telescope))))))) ;`
 - `X =
 s(np(n(john)),vp(vp(v(saw),np(d(the),n(man))),pp(p(with),np(d(a),n(telescope)))))) ;`
 - `no`
LR(0) Goto Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
LR(0) Action Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>S</td>
<td>D</td>
<td>A</td>
<td>S</td>
<td>N</td>
<td>R</td>
<td>NP</td>
<td>S</td>
<td>V</td>
<td>R</td>
<td>NP</td>
<td>S</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>A₂</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>VP</td>
<td>R</td>
<td>VP</td>
</tr>
<tr>
<td>A₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RV</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = shift, R = reduce, A = accept

Empty cells = error states

Multiple actions = machine conflict

Prolog’s computation rule: *backtrack*
LR(0) Conflict Statistics

- **Toy grammar**
 - 14 states
 - 6 states
 - with 2 competing actions
 - states 11, 10, 8:
 - *shift-reduce conflict*
 - 1 state
 - with 3 competing actions
 - State 7:
 - *shift(d) shift(n) reduce(vp->v)*

![Bar chart showing number of states with conflicts](image)
LR Parsing

• in fact
 – LR-parsers are generally acknowledged to be the fastest parsers
 • using lookahead (current terminal symbol)
 • and when combined with the chart technique (memorizing subphrases in a table - dynamic programming)
 – textbook
 • Earley’s algorithm (13.4.2)
 • uses chart
 • but builds dotted-rule configurations dynamically at parse-time
 • instead of ahead of time (so slower than LR)