
LING 364: Introduction to
Formal Semantics

Lecture 10
February 14th

Administrivia

• Reminder
– Homework 2 due tonight

• we did Exercises 1 through 3 in the lab class
last Thursday

• need more help?
• see me after class today...

Administrivia

• Thursday
– (3:30pm – 4:45pm)

• Computer Lab Class
• meet in Social Sciences 224 instead of here

Last Time

• Grammar Rule Recursion
• Recursion:

– A phrase may contain embedded inside another
instance of the same phrase

• Examples:
– sentence with a relative clause

• [Sbar [S I saw [NP the man [Sbar who [S attacked me]]]]]

– possessive NPs
• [NP [NP [NP John]’s mother]’s cat]

Last Time
• Grammar Rule Recursion
• (Fixed) Prolog Computation Rule:

– always pick the first-mentioned matching grammar rule to try each
time we expand a non-terminal

• General Rule for writing recursive rules:
– put recursive case last
– i.e. place non-recursive rules for a non-terminal ahead of the

recursive ones
• DCG rules for Possessive NPs:

– np --> np, [‘‘‘s‘], n.
– n --> [mother].

– n --> [cat].
– np --> [john].

move
recursive

rule to
the end

avoid Infinite Loop in Prolog
ERROR: out of local stack.

Last Time
• Chapter 3: More about Predicates
• Lambda Calculus vs. Prolog notation

– easy to understand as just “syntactic sugar”
• i.e. just an equivalent way of expressing what we’ve been using Prolog for

– every logic variable, e.g. X, must be “quantified” using lambda, e.g. λx.
– result is a slightly more complicated-looking notation

• Example:
– Phrase Lambda Calculus Prolog notation
– barks λx.x barks barks(X).

– Shelby barks [λx.x barks](Shelby) barks(X), X = shelby.

• Example (Quiz 3) transitive predicate:
– Phrase Lambda Calculus Prolog notation
– likes λy.[λx.x likes y] likes(X,Y).

– likes Mary [λy.[λx.x likes y]](Mary) likes(X,Y), Y = mary.

Today’s Topic

• “The Lambda Calculus Lecture”

– Getting comfortable with Lambda Calculus
• see it as another way of stating what we have

been doing already using Prolog notation
– do lots of examples

More on the Lambda Calculus
• Lambda Calculus vs. Prolog notation
• Example (Quiz 3) transitive predicate:

– Phrase Lambda Calculus Prolog notation
– likes λy.[λx.x likes y] likes(X,Y).

– likes Mary [λy.[λx.x likes y]](Mary) likes(X,Y), Y = mary.

– λx.x likes Mary likes(X,mary).

– John likes Mary [λx.x likes Mary](John) likes(X,mary), X = john.

– John likes Mary likes(john,mary).

More on the Lambda Calculus
• How to do variable substitution

– Official Name: Beta (β)-reduction

– Example Expression
– likes [λy.[λx.x likes y]]
– likes Mary [λy.[λx.x likes y]](Mary)

– means (basically):
– (1) delete the outer layer, i.e. remove [λy.](Mary) part, and
– (2) keep the part, and
– (3) replace all occurrences of the deleted lambda variable y in with Mary

[λy.[λx.x likes y]](Mary)

[λx.x likes y] [λy.](Mary)

[λx.x likes Mary]

More on the Lambda Calculus
Note:

nesting order of λy and λx matters
why:

λy.[λx.x likes y]
λx.[λy.x likes y]
here: lambda expression quantifier for the
object must be outside because of phrase
structure hierarchy

Example:
Phrase Lambda Calculus

likes λy.[λx.x likes y]
likes Mary [λy.[λx.x likes y]](Mary)

λx.x likes Mary

John likes Mary [λx.x likes Mary](John)
 John likes Mary

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

sentence

np

np

vp

vJohn

Marylikes

Maryλy.[λx.x likes y]

λx.x likes MaryJohn

John likes Mary

Prolog
notation

Lambda
Calculus

More on the Lambda Calculus
• 3.3 Relative Clauses

– (7) Hannibal is [who Shelby saw]
• semantics of relative clause [who Shelby saw]:

– who Shelby saw is a bit like a sentence (proposition)
• who1 Shelby saw e1 wh-movement of who1 leaving a trace e1
• Shelby saw who underlying structure

• Prolog style:
• saw(shelby,who).

• saw(shelby,X). (using a logic variable for who)

• lambda calculus style:
• λx.Shelby saw x (straight translation from Prolog)

More on the Lambda Calculus
• We’re going to compare:

– (7) Hannibal is [who Shelby saw]
– (7’) Hannibal is happy

• Consider the semantics of (7’)

sentence

np

np

vp

vHannibal

happyis

happy(X)

happy(X)hannibal

happy(hannibal)
Prolog
notation

cf. Homework 2
John is a student student(john).

John is a baseball fan baseball_fan(john).

sentence

np

np

vp

vHannibal

happyis

λx.x happyλy.y

λx.x happyHannibal

Hannibal happy
Lambda
calculus

• In the lambda calculus, the semantics of
copula be is the identity function, e.g. λy.y

• Example Derivation:
– Phrase Lambda Calculus
– is λy.y
– happy λx.x happy
– is happy [λy.y](λx.x happy)
– λx.x happy

basically the same derivation as...
Phrase Lambda Calculus
barks λx.x barks
Shelby barks [λx.x barks](Shelby)

Shelby barks

sentence

np vp

vHannibal

is

sbar

sentence

np

np

vp

vShelby

saw

np

e1

who1

More on the Lambda Calculus
• Back to comparing:

– (7) Hannibal is [who Shelby saw]
– (7’) Hannibal is happy

• Semantics (Prolog-style):
– (7) Hannibal is [saw(shelby,X)]
– (7’) Hannibal is [happy(X)]

• Semantics (Lambda calculus):
– (7) Hannibal is [λx.Shelby saw x]
– (7’) Hannibal is [λx.x happy]

• Notice the similarity between (7) and (7’)
wrt meaning:

– both highlighted parts are single variable
λx expressions

– (unsaturated for subject)
– we can say they are of the “same type”
– This means we can use the same identity

function λy.y for the copula in either case

sentence

np

np

vp

vHannibal

happyis

λx.x happy

λx.x happy

Hannibal happy

(Simplified Derivation)
Points to remember:
Phrase Lambda calculus
who λx
e x

λy.y

Hannibal

λy.y saw xShelby

[λy.y saw x](Shelby)Shelby saw x

λx.Shelby saw x

λx

λx.Shelby saw x

Shelby saw Hannibal

xλx.[λy.y saw x]

More on the Lambda Calculus

• We could do topicalization in the same way
as for relative clauses

• 3.4 Topicalization
– (9) Shelby, Mary saw
– (10) Shelby is who1 Mary saw e1

– (10’) Shelby is [λx.Mary saw x]
– (10”) Mary saw Shelby

