LING 364: Introduction to
Formal Semantics

Lecture 10
February 14th

Administrivia

 Reminder
— Homework 2 due tonight

« we did Exercises 1 through 3 in the lab class
last Thursday

* need more help?
* see me after class today...

Administrivia

* Thursday
—(3:30pm — 4:45pm)
« Computer Lab Class
* meet in Social Sciences 224 instead of here

Last Time

« Grammar Rule Recursion

* Recursion:
— A phrase may contain embedded inside another
instance of the same phrase
 Examples:

— sentence with a relative clause
* [spar [s | S@W [\p the man [, Who [5 attacked me]]]]]

— possessive NPs
* [wp [np [np JONN]'s mother]'s cat]

Last Time

Grammar Rule Recursion

(Fixed) Prolog Computation Rule:

— always pick the first-mentioned matching grammar rule to try each
time we expand a non-terminal

General Rule for writing recursive rules:

— put recursive case last

— i.e. place non-recursive rules for a non-terminal ahead of the
recursive ones

DCG rules for Possessive NPs: avoid Infinite Loop in Prolog

- np --> np, [‘‘'s'], n. ERROR: out of local stack.
- n ——> [mother].
- n ——> [cat].

- np —--> [john].

Last Time

Chapter 3: More about Predicates

Lambda Calculus vs. Prolog notation

— easy to understand as just “syntactic sugar”

i.e. just an equivalent way of expressing what we’ve been using Prolog for
— every logic variable, e.q. X, must be “quantified” using lambda, e.g. Ax.
— result is a slightly more complicated-looking notation

Example:

— Phrase Lambda Calculus Prolog notation

— barks AXx.x barks barks (X) .

— Shelby barks [AX.x barks](Shelby) barks (X), X = shelby.
Example (Quiz 3) transitive predicate:

— Phrase Lambda Calculus Prolog notation

— likes Ay.[AX.X likes Y] likes (X, Y) .

— likes Mary [Ay.[AX.X likes y]](Mary) likes (X,Y), Y = mary.

Today's Topic
« “The Lambda Calculus Lecture”

— Getting comfortable with Lambda Calculus

 see it as another way of stating what we have
been doing already using Prolog notation

— do lots of examples

More on the Lambda Calculus

 Lambda Calculus vs. Prolog notation
« Example (Quiz 3) transitive predicate:

Phrase Lambda Calculus
likes Ay.[AX.x likes Y]

likes Mary [Ay.[Ax.X likes y]](Mary)
Ax.x likes Mary

John likes Mary [Ax.x likes Mary](John)
John likes Mary

Prolog notation
likes (X,Y).

likes(X,Y), Y = mary.
likes (X, mary) .

likes (X,mary), X = john.

likes (john,mary) .

More on the Lambda Calculus

« How to do variable substitution
— Official Name: Beta (8)-reduction

— Example Expression
— likes [Ay.[Ax.X likes y]]
— likes Mary [Ay.[Ax.x likes y]](Mary)

— means (basically):

— (1) delete the outer layer, i.e. remove [Ay. [1](Mary) part, and

— (2) keep the [part, and

— (3) replace all occurrences of the deleted lambda variable y in [1 with Mary

[Ay.[Ax.x likes y]|(Mary)

gt

[AX.X likes y] [Ay.](Mary)

[AX.Xx likes Mary]

More on the Lambda Calculus

Note:

nesting order of Ay and Ax matters
why:

Ay.[Ax.x likes y]

AX.[Ay.x likes y]

here: lambda expression quantifier for the
object must be outside because of phrase
structure hierarchy

Example:

Phrase Lambda Calculus

likes Ay.[Ax.x likes y]

likes Mary [Ay.[Ax.x likes y]](Mary)
Ax.Xx likes Mary

John likes Mary [Ax.x likes Mary](John)

John likes Mary

likes(john,mary)

T Prolog
john likes(X,mary) notation
| T ~—

John Jikes(X)Y) mary

| |

likes Mary
John likes Mary Lambda
/\
Calculus
John Ax.x likes Mary
| T

John)y [Ax.xlikesy] Mary

| |

likes I\/Iary

More on the Lambda Calculus

3.3 Relative Clauses
— (7) Hannibal is [who Shelby saw]

semantics of relative clause [who Shelby saw]:
— who Shelby saw is a bit like a sentence (proposition)

« who, Shelby saw e, wh-movement of who, leaving a trace e,
« Shelby saw who underlying structure
Prolog style:
e saw(shelby,who).
« saw (shelby, X) . (using a logic variable for who)

lambda calculus style:
* AX.Shelby saw x (straight translation from Prolog)

More on the Lambda Calculus

We're going to compare: happy(hannibal)
— (7) Hannibal is [who Shelby saw] T~ Prolog
_ (7’) Hannibal is happy hannibal happy(X) notation
. . | T~
Consider the semantics of (7’) Hannibal happy(X)

| |

cf. Homework 2 is happy

John is a student student (john) .
John is a baseball fan baseball fan(john).

Hannibal happy

In the lambda calculus, the semantics of o~ Lambda
copula be is the identity function, e.g. Ay.y _
e Hannibal AX.x happy calculus
Example Derivation: | T~
— Phrase Lambda Calculus Hannibal Ayy Ax.x happy
— s Ay.y | l
— happy AX.X happy is happy

— is happy [Ay.y](AX.x happy)
_ Ax.x happy

Back to comparing:
— (7) Hannibal is [who Shelby saw]
— (7’) Hannibal is happy
Semantics (Prolog-style):
— (7) Hannibal is [saw(shelby,X)]
— (7’) Hannibal is [happy(X)]
Semantics (Lambda calculus):
— (7) Hannibal is [Ax.Shelby saw x]
— (7’) Hannibal is [Ax.x happy]
Notice the similarity between (7) and (7’°)
wrt meaning:

— both highlighted parts are single variable
AX expressions

— (unsaturated for subject)
— we can say they are of the “same type”

— This means we can use the same identity
function \y.y for the copula in either case

More on the Lambda Calculus

Shelby saw Hannibal

/\
Hannibal Ax.Shelby saw x
| s~ T—
Hannibal Ay.y Ax.Shelby saw x
is Ax happ Shelby saw x 1elby)
| T~
who, Shelby Ay.y saw X
| T~

Shelby Ax.[Ay.y saw x] x

saw e,

(Simplified Derivation)
Points to remember:
Phrase Lambda calculus
who AX

e X

More on the Lambda Calculus

* We could do topicalization in the same way
as for relative clauses

* 3.4 Topicalization
— (9) Shelby, Mary saw
— (10) Shelby is who, Mary saw e,
— (10°) Shelby is [Ax.Mary saw x]
— (107) Mary saw Shelby

