LING/C SC/PSYC 438/538
Computational Linguistics

Sandiway Fong
Lecture 13: 10/9
Administrivia

• Homework 2
 – grade (to be) sent by email today

• Upcoming midterm
 – this Thursday
NDFSA → (D)FSA: Recap

- **set of states construction**
 - new machine simulates in parallel all possible situations for the original machine

- **procedure must terminate**
 - 4 states
 - $2^4 - 1 = 15$ possible different states in the new machine
Practice Question

• convert the NDFSA into a deterministic FSA
• implement both the NDFSA and the equivalent FSA in Prolog using the “one predicate per state” encoding
• run both machines on the strings \textit{abab} and \textit{abaaba},
 – how many steps (transitions + final stop) does each machine make?

\[\text{from figure 2.27 in the textbook} \]
Today’s Topics

• FSA to regexp
• FSA and complementation
• Regexp and complementation
FSA to Regexp

• Give a Perl regexp for this FSA
FSA to Regexp

• Let’s define E_i to be the possible strings that can lead to an accepting computation from state i

• Then:
 - $E_1 = aE_2$
 - $E_2 = bE_3 | bE_4$
 - $E_3 = aE_2 | \lambda$
 - $E_4 = aE_3$
FSA to Regexp

- Solve simultaneous equations
 - $E_1 = aE_2$
 - $E_2 = bE_3 \mid bE_4$
 - $E_3 = aE_2 \mid \lambda$
 - $E_4 = aE_3$
FSA to Regexp

• Solve simultaneous equations
 – $E_1 = aE_2$
 – $E_2 = bE_3 \mid bE_4$ (eliminate)
 – $E_3 = aE_2 \mid \lambda$
 – $E_4 = aE_3$
• Then
 – $E_1 = abE_3 \mid abE_4$
 – $E_3 = abE_3 \mid abE_4 \mid \lambda$
FSA to Regexp

- Solve reduced equations
 - $E_1 = abE_3 \mid abE_4$
 - $E_3 = abE_3 \mid abE_4 \mid \lambda$
 - $E_4 = aE_3$
FSA to Regexp

• Solve reduced equations
 – \(E_1 = abE_3 \mid abE_4 \)
 – \(E_3 = abE_3 \mid abE_4 \mid \lambda \)
 – \(E_4 = aE_3 \) (eliminate \(E_4 \))
• Then
 – \(E_1 = abE_3 \mid abaE_3 \)
 – \(E_3 = abE_3 \mid abaE_3 \mid \lambda \)
FSA to Regexp

• Solve reduced equations
 – \(E_1 = abE_3 \mid abaE_3 \)
 – \(E_3 = abE_3 \mid abaE_3 \mid \lambda \)
• Solve recursive definition for \(E_3 \)
 rewrite \(E_3 \) as
 – \(E_3 = (ab|aba)E_3 \mid \lambda \)
FSA to Regexp

• Then
 – $E_1 = abE_3 \mid abaE_3$
 – $E_3 = (ab\mid aba)^*$

• Also
 – $E_1 = (ab\mid aba)E_3$

• Substituting for E_3
 – $E_1 = (ab\mid aba)(ab\mid aba)^*$
FSA to Regexp

- $E_1 = (ab|aba)(ab|aba)^*$

 • We know
 - $e^+ = ee^* = e^*e$

 • Hence
 - $E_1 = (ab|aba)^+$

Note: the order of variable elimination matters
FSA and Complementation

- FSA are closed under complementation
 - i.e. make a new FSA’ accept strings rejected by FSA, and reject strings accepted by FSA over the alphabet
 - $\Sigma = \{a, b\}$
FSA and Complementation

• A Simple Idea:
 – make old accepting state(s) non-final states
 – make non-final and reject states accepting states

• Nearly correct, but why does this not work?
 – hint: consider aba
FSA and Complementation

- **Prolog**
 1. `one([a|L]) :- two(L).`
 2. `two([b|L]) :- three(L).`
 3. `two([b|L]) :- four(L).`
 4. `three([]).`
 5. `three([a|L]) :- two(L).`
 6. `four([a|L]) :- three(L).`

 weakness is that \+ can’t be used to generate

- To construct the complement FSA in Prolog:
 - *add a single line*
 7. `fsab(L) :- \+ one(L).`

- \+ is the Prolog operator for negation as failure to prove
 - i.e.
 - \+ one(L) is true if one(L) cannot be true
 - \+ one(L) is false if one(L) can be true
Regexp and Complementation

Not part of basic regexps

• **Formally, we can define:**
 – complement of regexp $e = \Sigma^* - e$
 – where
 • $\Sigma^* = $ set of all possible strings over alphabet Σ
 • i.e. zero or more occurrences ...

• **Class Exercise**
 – Let $\Sigma = \{a,b\}$
 – Give a Perl regexp equivalent to the complement regexp for $(ab|aba)^+$