
Fast approximate string matching with finite automata

Rapida búsqueda aproximada con autómatas de estado finito

Mans Hulden
University of Arizona

mhulden@email.arizona.edu

Resumen: En este art́ıculo se presenta un algoritmo eficiente para dada una cadena
de caracteres extraer las cadenas más cercanas de un autómata de estado finitos
según alguna métrica de distancia. El algoritmo puede ser adaptado con el fin de
beneficiarse de una variedad de métricas para determinar la similitud entre palabras.
Palabras clave: búsqueda aproximada, autómata

Abstract: We present a fast algorithm for finding approximate matches of a string
in a finite-state automaton, given some metric of similarity. The algorithm can be
adapted to use a variety of metrics for determining the distance between two words.
Keywords: approximate search, finite automata

1 Introduction

In this paper we shall present a promising ap-
proach to a classic search problem: given a
single word w and a large set of words W ,
quickly deciding which of the words in W
most closely resembles w, measured by some
metric of similarity, such as minimum edit
distance.

Performing this type of search quickly is
important for many applications, not least in
natural language processing. Spelling correc-
tors, Optical Character Recognition applica-
tions and syntactic parsers, among others, all
rely on quick approximate matching of some
string against a pattern of strings.

The standard edit distance algorithm
given in most textbooks on the subject does
not scale well to large search problems. Cer-
tainly, calculating the edit distance between
two individual words can be done quickly,
even with different costs for different charac-
ter substitutions and insertions. The ubiq-
uitous textbook algorithm for finding the
minimum edit distance (MED) between two
words based on the dynamic programming
method takes quadratic time in the length
of the longer word.

However, finding the closest match be-
tween an input word w and a list of, say
1,000,000 words, is a much more demanding
task. The strategy of calculating the edit dis-
tance between every word on the list and the

input word is likely to take too much time.
Naturally, if we perform the search by cal-

culating the edit distance between each word
on a list and our target word w, there are
a number of possible optimizations that can
be made, such as aborting the calculation for
a word-pair as soon as the MED comparison
exceeds the lowest MED encountered so far.
Even so, the search space remains too large
for this strategy to be of practical use.

1.1 A more general problem

In addressing this problem, we shall inves-
tigate a much more general problem: that
of finding the closest approximate match be-
tween a word w and words encoded in finite-
state automaton A. The problem is more
general because a finite automaton can not
only encode a finite number of words (as a
deterministic acyclic automaton), but an in-
finite number of words, or a ‘pattern.’

Considering the problem of finding an ap-
proximate match to word w against some au-
tomaton A instead of a word list L has many
advantages. First, a finite word list can al-
ways be converted into an acyclic determinis-
tic finite automaton. This means that a good
solution to the problem of matching against
an automaton is also a good solution to the
word list case. Second, a finite automaton
can represent an infinite number of strings—
i.e. a pattern of strings—by virtue of the

Procesamiento del Lenguaje Natural, núm. 43 (2009), pp. 57-64 recibido 1-05-2009; aceptado 5-06-2009

ISSN: 1135-5948 © 2009 Sociedad Española para el Procesamiento del Lenguaje Natural



fact that it can contain cycles. Some natu-
ral languages, for instance, allow very long
compound words, the patterns of which can
be compactly modeled as a cyclic automaton.
Third: natural language morphological ana-
lyzers are often implemented as finite-state
transducers (Beesley and Karttunen, 2003).
Creating a deterministic minimal finite-state
automaton by extracting the domain or range
from a finite-state transducer is trivial: one
simply ignores the input or the output labels,
and determinizes and minimizes the resulting
automaton. This means, for instance, that if
one has access to a morphology of a language
represented as a transducer, that morphology
can easily be used as a spelling corrector.

2 Solution based on informed
search

Most previous solutions to this problem have
been based on simple brute-force breadth or
depth-first search through the automaton A,
comparing paths in the automaton with the
word at hand and aborting searches on a path
as soon as the required number of changes in
the word at a point in the search reaches some
specified cutoff.1

Our observation, however, has been that
finite-state automata contain useful informa-
tion that can be extracted cheaply and used
profitably as a reliable guide in the search
process, avoiding a brute-force strategy and
the exponential growth of the search com-
plexity it entails. In particular, as we shall
show, one piece of information that can be
extracted from an automaton with little ef-
fort is knowledge about what kinds of sym-
bols can be encountered in the future. That
is, for each state in an automaton A, we can
extract information about all the possible fu-
ture symbols that can be encountered for the
next n steps, given any n.

2.1 A∗-search
When performing searches with some type
of additional information to guide the search
process, the preferred family of algorithms
to use is usually some variant of the A∗-
algorithm (Hart, Nilsson, and Raphael,
1968). This was an obvious choice for us as
well. The additional information we use—the

1The most prominent ones given in the literature
are Oflazer (1996) who presents a depth-first search
algorithm, and Schulz and Mihov (2002), which is
essentially the same algorithm.

possible symbols that can be seen in future
paths that extend out from some state in the
automaton—can function as a guess about
profitable paths to explore, and thus fits well
in the A∗-paradigm.

The A∗-algorithm essentially requires that
we have access to two types of costs during
our search: a cost of the path in a partial ex-
ploration (g), and a guess about the future
cost (h), which may not be an overestimate
for the heuristic to be admissible. At every
step of choosing which partial path to expand
next, we take into account the combined ac-
tual cost so far (g), and the guess (h), yield-
ing f = g + h.

Searching an automaton for matches
against a word with edit distance naturally
yields g, which is the number of changes made
so far in reaching a state s in an automaton
comparing against the word w. The guess h
is based on the heuristic we already briefly
introduced.

2.2 The search algorithm

For our initial experiments, we have consid-
ered the restricted problem of finding the
shortest Levenshtein distance between w and
paths in an automaton A. This is the case
of MED where insertion, substitution, and
deletion all cost 1 unit. However, the al-
gorithm can easily be extended to capture
varying insertion, substitution, and deletion
costs through so-called confusion matrices,
and even to context-dependent costs.

Essentially, the search begins with a sin-
gle node represented by the start state and
the word at position 0 (the starting posi-
tion). We then consider each possible edge
in the automaton from the state v. If the
edge matches the current word position sym-
bol, we create a new node by advancing to
the target state v′, advancing pos (the word
position counter pos) by 1, recalculating the
costs f = g+h and storing this as a new node
to the agenda marked as x:x (which indicates
no change was made). We also consider the
cases where we insert a symbol (0:x), delete
a symbol (x:0), and (if the edge currently in-
spected does not match the symbol in the
word at position pos) substituting a symbol
(x:y) with another one. When we are done
with the node, we find the node with the low-
est score so far, expand that node, and keep
going until we find a solution. See figure 1
for a partially expanded search of the word

Mans Hulden

58
Procesamiento del Lenguaje Natural, núm. 43 (2009)



f = 0 g = 0 h =0
pos = 0
state = 0

state=0

pos=1
state=1

f=4 g=1 h=3
pos=0
state=1 

pos=1
state=2

pos=0

f=1 g=1 h=0

f=2 g=1 h=1
pos=0

pos=1
state=3

pos=1

state=3

d:d

0:d

d:c

0:c

d:0

d:f

0:f

state=2

f=3 g=1 h=2

initial node

f=3 g=1 h=2

f=1 g=1 h=0

f=2 g=0 h=2

Input word: dat

Figure 1: Initial steps in searching for the
approximate match against the word dat and
the automaton depicted in figure 3. The node
with the outgoing arrow will be expanded next.
To reach that node from the initial node, we
moved from state 0 to state 3 in the automa-
ton, and thus had to substitute a d in the
input for a c in the automaton, costing one
unit, reflected in the g-value. The h value for
that node is 0 since all the subsequent letters
in the remainder of the word (a and t are in
the state’s symbol table. For this illustration,
we assume the heuristic h(∞), seen in figure
3.

dat against the automata in figure 3.

3 The heuristics

There are two obvious criteria for creating a
useful heuristic h for the approximate search
through a graph: the heuristic must be fast
to calculate, either beforehand or on the fly,
and, if calculated prior to the search, it must
be compact—i.e. take up a linear amount of
space proportional to the number of states in
A we want to search.

f

c

a

god

t

sr

[][o,r]

[a,c,d,f,o,r] [o,g]

[s,t]

[g,s] [s]

[a,t]
*

20

3 5

4 7

61

Figure 2: An automaton where information
about the possible symbols of future paths of
length n (for the case n = 2) is stored in each
state.

f

c

a

god

t

sr

[]

o,r,s,t]
[o,g,s] [g,s]

[g,o,r,s]

[s][a,c,d,f,g,

[s,t][a,s,t]
*

Figure 3: An automaton where information
about the possible symbols of future paths of
length n (for the case n = ∞) is stored in
each state. Calculating this for the set of
states is accomplished in linear time by al-
gorithm 2.1.

As already mentioned, we have chosen as
our heuristic function to store, for each state,
a list of symbols that can be seen somewhere
along a path of length n starting from that
state. Figures 2 and 3 illustrate this by two
acyclic finite automata that encode a num-
ber of words, and where every state has been
marked with information about all possible
future symbols n steps ahead, where n is 2
(figure 2), and ∞ (figure 3).

During the search of the graph this list is
consulted and compared against the symbols
in the current word we have yet to match.
The discrepancies between the symbols in the

Fast approximate string matching with finite automata

59
Procesamiento del Lenguaje Natural, núm. 43 (2009)



state and the symbols yet to be matched in
the current word is used as our cost heuristic.
That is, for each of a maximum of n sym-
bols remaining to be matched in the word w
at the current position of the search, for any
symbol not found stored in the current state,
we add a cost of 1 to the heuristic function
h. This reflects an estimate (which is correct)
that some time in the future any symbols not
present in the path we are exploring will have
to be either considered substitutions or dele-
tions with respect to the input word.

For example, suppose we were matching
the word cagr at position 1, i.e. the symbols
remaining to be matched are agr, and sup-
pose we are in the state marked with an aster-
isk in figures 2 and 3. Now using our heuristic
function where n is 2 (figure 2), gives us an
estimated h-value of 1, since the two follow-
ing symbols to be matched are a and g, and
the state marked with an asterisk does not
contain g. For the same position, using the
heuristic where n is ∞ (figure 3), the h-value
becomes 2, since neither g nor r are found in
subsequent paths, as is seen from the list of
symbols stored in the state.

3.1 Consistency of h

It is easy to see that h for any n is an admis-
sible heuristic for A∗-search in that it never
overestimates the cost to reach the goal.2
Certainly if there is a discrepancy of i sym-
bols between future paths and the remainder
of the word for some number of steps, those
symbols will have to be produced by inser-
tion or substitution (each of which cost 1 in
our model), and hence h cannot overestimate
the cost to the goal.3

This means that goals in the search will be
found in order of cost, which is of course de-
sirable, since we know that the first solution
we find is the shortest one. Naturally, we
can keep exploring and find more solutions
if desired in increasing order of cost. For a
spell checking application, for instance, we
would keep the search going until either we
reach some cutoff where the cost has gotten
too high, or we find some desired number of

2See e.g. Pearl (1984) for extensive discussions
about what kinds of heuristics are suitable for A∗.

3The estimate h is also consistent in that it fulfils
the triangle equality h(p) ≤ cost(p, a, p′) + h(p′), i.e.
the estimated cost to the goal is always smaller than
the combined actual cost to any point p′ reachable
from p and the new estimated cost from p′ to the
goal.

approximate matches to suggest as corrected
spellings.

4 Precalculating h

For any serious application we will want to
precalculate, for each state, the symbols that
can be subsequently matched along some
path of length n.

For any finite n this is a straightforward
task: for each state we simply perform a
depth-first search with a depth threshold of
n states, and store all symbols we encounter
on an edge in the state we started the search
from. This procedure is given in Algorithm
2.2.

The case where n = ∞ is more difficult.
Here we want to know, for each state, all
the symbols that can possibly be encoun-
tered in the future, no matter how long the
path. If we knew that the automaton we
are dealing with were acyclic, this could be
solved—although at a cost of some computa-
tion time—by the same algorithm as for finite
n by limiting searches to the number of states
in A. Since we do not want to limit ourselves
to searching acyclic graphs only, we have de-
veloped a separate algorithm for marking fu-
ture symbols on the states in the case where
n = ∞.

4.1 The special case n=∞
The solution for this case is based on the
observation that we can divide an automa-
ton into its strongly connected components—
groups of states where each state has a path
to each other in the group. Naturally, all
states in the same strongly connected com-
ponent (SCC) share the same future symbols
for n = ∞.

Interestingly, we do not need to split the
graph into its SCCs first, and then mark the
states. We can in fact do both at the same
time—calculate the SCC of the graph, and
mark each state with the possible symbols
that can follow. We do so by an adaptation
of the well-known algorithm by Tarjan (1972)
for dividing a graph into SCCs. The core of
Tarjan’s original algorithm is to perform, by
recursion, a depth-first search (DFS) on the
graph, while keeping a separate stack to store
the vertices of the search performed so far. In
addition, each vertex is given an index (low)
to mark when it was discovered.4

4A very thorough analysis of this remarkably sim-
ple algorithm is given in Aho, Hopcroft, and Ullman

Mans Hulden

60
Procesamiento del Lenguaje Natural, núm. 43 (2009)



We now turn to the question of adapting
this algorithm to mark each state with all
its possible future symbols, presented in Al-
gorithm 2.1. The crux to the marking the
states at the same time as performing the
SCC DFS is that a) for each edge between
v and v′ discovered, the parent vertex v in-
herits the symbols at v′ as well as the edge
symbol e.sym used to get from v to v′, and
b) after we encounter the root of a SCC, we
copy the properties of the root vertex v to all
the child vertices v′.

5 Choosing n

Having now various possible n at our disposal
to use as the guiding heuristic in the search
of solutions, the question about which n, or
which combinations of n to use as a heuristic
is largely an empirical one. Our tests indi-
cate that using a combination of n = 2 and
n = ∞ is far superior to any other combi-
nation of n-values. When used in combina-
tion, the algorithm always chooses the larger
of the two guesses, Max(h(2), h(∞)), as the
h-value.

Naturally, using two heuristics requires
two symbol vectors to be stored for each
state, where each vector takes up |Σ| bits of
space, for a sum total of 2|Σ||A| bits, where
|A| is the number of states in the automaton
and |Σ| the alphabet size of the automaton.
Given that word lists can be compressed into
a very small number of states, the combined
h is probably the best choice even though it
takes up twice as much storage as a single
heuristic. If a single heuristic is needed be-
cause of space concerns, our results indicate
that h(∞) is the best overall choice, although
for applications where a small number of er-
rors are expected, such as spelling correction,
n = 2 or n = 3 may be slightly better.

Table 1 shows the number of nodes ex-
panded as well as the number of nodes in-
serted on the agenda of the search graph (by
Algorithm 2.3) for 100 randomly chosen mis-
spelled words (all with shortest edit distance
3 or less), using various combinations of h,
against a dictionary of 556,368 words.

We used these results (because they
most likely reflect average use of the algo-
rithm) to settle for using the combination of
Max(h(2), h(∞)) as our best heuristic h.

(1974).

h0 h1 h2 h3 h4 h5

NI 6092 1892 1548 1772 1904 622
NE 3295 1143 909 1049 1193 89

Table 1: Average number of nodes inserted
on the agenda (NI) and nodes expanded (NE)
when performing a search of 100 randomly
perturbed words against a dictionary of Span-
ish containing 556,368 words, encoded as a
finite-state automaton. Each search termi-
nated after finding the 5 closest matches. The
average length of the words was 6.6 letters
and the average edit distance to each match
was 2.18. The different heuristics used were
h0: no heuristic, i.e. h is always zero; h1:
only consider n = ∞; h2: only consider
n = 2; h3: only consider n = 3; h4, only
consider n = 4, and h5: the heuristic was
max(n = 2, n = ∞) and ties were resolved in
the priority queue by giving priority to the
highest word position. The priority queue
strategy for all except h5 was purposely ad-
versarial to the search: i.e. nodes expanded
were extracted LILO in the case of f-score
ties. Note that the nodes expanded measure
is much more important since the time to in-
sert a node in a priority queue is generally
constant, while the time taken to extract the
minimum is on the order of log(n), with n
being the number of elements in the queue.

5.1 Priority queue strategy

The number of nodes explored before finding
solutions is affected not only by the particu-
lar heuristic used, but also by the choice of
tiebreaking in the search strategy. In many
cases, we will find unexpanded fringe nodes
in the priority queue with the exact same f -
value. How to choose a node for expansion
in the case of ties has great bearing on the
speed of the search as well, as is seen in table
1. In our experiments, the strategy of break-
ing ties so that the node that has advanced
farthest in the word to be matched is given
priority has proven to be far superior to any
of the tiebreaking strategies we explored.

The reason for this seems natural: if we
are exploring possible approximate matches,
then, other things being equal (i.e. the f -
score), one should follow the path that has
moved the longest toward the end of the
word.

Fast approximate string matching with finite automata

61
Procesamiento del Lenguaje Natural, núm. 43 (2009)



foma[0]: regex Spanish2;
47432 states, 126535 arcs, 556368 paths.
foma[1]: apply med
apply med> wuighuiwrwegfwfw

-sig-uiér-e--mos
wuighuiwrwegfwfw
Cost[f]: 10

elapsed time: 0.100000s
Nodes inserted: 56293
Nodes expanded: 20549
apply med>

Figure 4: Example search against a dictio-
nary in our implementation.

6 Results

We have implemented the algorithms de-
scribed as an extension to the freely avail-
able finite state toolkit, foma (Hulden, 2009).
The algorithms were written in C. We tested
them against various automata, including a
lexicon of English (represented as a cyclic
finite-state automaton), and several acyclic
lexicons of Spanish of between 500,000 and
1,000,000 words. The timing tests in fig-
ure 5 were achieved by generating 100 ran-
dom words of each minimum edit distance
1 through 10 from one of our lexica, and
then searching for the closest match with
the algorithm. Although discovery of clos-
est matches of edit distance more than 4 are
probably not useful for spelling correction ap-
plications, other applications (such as Opti-
cal Character Recognition) may need to find
closest matches that take into account far
more perturbances than spelling correction
applications need. For instance, figure 4 de-
picts our interface in the search of a word
that results in a match of edit distance 10,
where clearly the match would not be useful
for spelling correction since the input word is
mangled beyond recognition from its closest
match in the dictionary.

7 Discussion and further work

The main result that the algorithm points
to is that an informed search strategy such
as we have outlined above is clearly superior
to any uninformed strategy when searching
word graphs such as finite automata for ap-
proximate matches. In particular, the heuris-
tic of the strategy we have used is fast to
compute ahead of time—taking only linear

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

tim
e(

m
se

c)

MED

Average times for MED search for two algorithms

Current algorithm
Schulz & Mihov

Figure 5: Average wall clock times in our im-
plementation of the new algorithm for find-
ing minimum edit distances for 1000 words of
edit distance, compared to running a Schulz
and Mihov (2002) search on the same words.
The 1000 words consisted of 100 words of
each edit distance, i.e. 100 words in each
group 1 through 10. The automaton which
the randomly generated words were matched
against was the FreeLing Spanish dictionary
of 556,368 words which we first converted
into a deterministic acyclic automaton.

time and space in the size of the automaton—
and often results in a dramatic reduction of
the search space that needs to be explored
in order to find approximate matches. For
applications such as spelling correction, the
method is very space and time-efficient, since
one can encode large finite lists of words
quite compactly as a finite automaton. Find-
ing matches for minimum edit distance 5 in
all our experiments against large dictionaries
never took more than 70 milliseconds. For
edit distances 1–3, the granularity of the sys-
tem clock (one millisecond) was such that the
timing results were always 0. As such, our
implementation is already practically usable
for many applications.

It also appears that the new strategy
scales well to much larger problems. The
seemingly exponential growth in the search
time seen toward the end of the graph in fig-
ure 5 is probably partly an artifact resulting
from the large number of errors in the word
and the fact that most of the words in the
automaton we matched against were much
shorter than the input words were. That is,
since almost every character in the words we
tested that were of MED 9 or 10 was an error,
there seems to be no way to avoid exploring
a very large part of the entire search space.
However, in preliminary tests against lexica
that contain much longer words, this growth

Mans Hulden

62
Procesamiento del Lenguaje Natural, núm. 43 (2009)



does not occur as quickly.

7.1 Comparison

The fastest previously known method (to us)
for performing the same type of approximate
search, that of Schulz and Mihov (2002),
which we had used before and was easily
available in foma, shows much poorer perfor-
mance as seen in the graph in figure 5. Im-
plementations may of course vary in practical
details and so an exact comparison is diffi-
cult. However, in comparing our algorithm
to Schulz & Mihov we tried to minimize this
disturbance in two ways: 1) Schulz & Mi-
hov perform a preliminary step of construct-
ing what they call a Levenshtein automaton
for some edit distance n and the input word
beforehand; we have not included this con-
struction time in our figures; 2) Schulz & Mi-
hov is essentially a simultaneous depth-first
search of two graphs, the Levenshtein au-
tomaton and the lexicon automaton A, and
this search is performed on the exact same
data structure as in the new algorithm (the
internal automaton data structure of foma).
These two points we believe make the algo-
rithm comparison more meaningful than it
would under other circumstances.

7.2 Complex distance metrics

All our experiments with the approximate
matching were done with Levenshtein edit
distance. But the algorithm can easily be
adapted to a variety of distance metrics. One
of the more useful metrics is to calculate costs
from a confusion matrix where each individ-
ual substitution, insertion, or deletion can
have a different cost. For instance, for Span-
ish spelling correction, one would want to
specify lower costs than ordinarily for sub-
stituting c for s, and b for v because of their
phonetic proximity or equality for speakers.

One can also concoct context-dependent
cost schemes. Again, drawing on an exam-
ple for Spanish, it may be beneficial to give a
low cost to substituting l as y, but only if pre-
ceded by a deletion of an l. This would repre-
sent the replacement of ll with y, as these are
phonetically similar for many speakers. For
all such extensions, the only modification the
basic algorithm needs is to keeping track of
the h-score estimate given that the costs may
differ for different operations of word pertur-
bation.

8 Conclusion

We have presented an algorithm for finding
approximate matches of a word to paths in
a finite automaton. The algorithm is a vari-
ant of the popular A∗ search algorithm where
the main heuristic to guide the search is to
record, for each state in the automaton, ev-
ery symbol that can be encountered in paths
extending from that state for n steps. Pre-
calculating this for the special case where
n = ∞ proved to be an interesting problem
in its own right, which we solved by adapting
Tarjan’s (1972) algorithm for finding strongly
connected components in a graph in linear
time.

We expect the algorithm to be useful
for a number of purposes, and have shown
that it performs very efficiently in suggesting
spelling corrections for misspelled word, even
against very large dictionaries.

References

Aho, Alfred V., John E. Hopcroft, and Jef-
frey D. Ullman. 1974. The Design
and Analysis of Computer Algorithms.
Addison-Wesley.

Beesley, Kenneth and Lauri Karttunen.
2003. Finite-State Morphology. CSLI,
Stanford.

Hart, P.E., N.J. Nilsson, and B. Raphael.
1968. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE
transactions on Systems Science and Cy-
bernetics, 4(2):100–107.

Hulden, Mans. 2009. Foma: a finite-state
compiler and library. In EACL 2009 Pro-
ceedings, pages 29–32.

Oflazer, Kemal. 1996. Error-tolerant
finite-state recognition with applications
to morphological analysis and spelling
correction. Computational Linguistics,
22(1):73–89.

Pearl, Judea. 1984. Heuristics: intelli-
gent search strategies for computer prob-
lem solving. Addison-Wesley.

Schulz, Klaus and Stoyan Mihov. 2002.
Fast string correction with Levenshtein
automata. International Journal on Doc-
ument Analysis and Recognition, 5(1):67–
85.

Tarjan, Robert E. 1972. Depth-First Search
and Linear Graph Algorithms. SIAM
Journal on Computing, 1(2):146–160.

Fast approximate string matching with finite automata

63
Procesamiento del Lenguaje Natural, núm. 43 (2009)



Algorithm 2.1: MarkVinf(v)

v.index ← index
v.low ← index
index ← index + 1
Push(v)
for each edge(v → v′)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v.syms ← v.syms ∪ v′.syms ∪ edge.sym
if v.index = 0

then
{
MarkVinf(v′)
v.low ← Min(v.low, v′.low)

else if v is on stack
then v.low ← Min(v.low, v′.index)

if v.low = v.index

then

⎧⎪⎪⎨
⎪⎪⎩

repeat
Pop(v′)
v′.syms ← v.syms

until v = v′

Algorithm 2.2: MarkVfin(V, n)

for each vhead ∈ V

do
{

d ← 0
LimitDFS(vhead)

LimitDFS(v)
d ← d + 1
if d > n

then
{

d ← d − 1
Return

for each edge(v → v′)

do

⎧⎨
⎩

vhead.syms ← vhead.syms ∪ edge
LimitDFS(v′)
d ← d − 1

Algorithm 2.3: Search(word,A)

agenda(v,pos,g,h) ← (start state, 0, 0, calculate h())
while agenda not empty

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pos,v,cost) ← remove-cheapest(agenda)
for each edge(v → v′)with sym e

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if v is final and pos is end of word
then Solution(node)

if word(pos) = edge
then Add(v′, pos + 1, cost)
else Add(v′, pos + 1, cost + substcost, calculate h())

Add(v′, pos, cost + delcost, calculate h())
Add(v, pos + 1, cost + inscost, calculate h())

Mans Hulden

64
Procesamiento del Lenguaje Natural, núm. 43 (2009)


