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Abstract
We present a parsing algorithm for arbitrary context-free and probabilistic context-free grammars based on a representation of
such grammars as a combination of a regular grammar and a grammar of balanced parentheses, similar to the representation used
in the Chomsky-Schützenberger theorem. The basic algorithm has the same worst-case complexity as the popular CKY and Ear-
ley parsing algorithms frequently employed in natural language processing tasks. As natural languages rarely take advantage of
the crucial distinguishing feature between regular and context-free languages, that of center embedding, we also investigate meth-
ods to speed up parsing at the cost of some overgeneration by forgoing the enforcement of proper nesting of constituents in the algorithm.
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1. Introduction
A common observation about descriptions of syntactic

structure of natural language is that the vast majority of
sentences annotated as context-free grammars for the most
part exhibits nearly right or left-linear structure. Syntactic
trees representing sentences tend very rarely, and in lim-
ited fashion, to take advantage of center-embedding, the
crucial distinguishing feature between regular languages
and context-free languages. Regular languages can be rec-
ognized and parsed in linear time, while the time taken
to parse sentences characterized by arbitrary context-free
grammars grows for all practical purposes with the cube of
the length of a sentence. These facts have made it an ap-
pealing enterprise to attempt to approximate context-free
grammars as regular languages, or otherwise limit the flex-
ibility of parsing algorithms, in the hope that one could
improve upon the efficiency of parsing and recognition.

In this paper we will present a parsing method for
probabilistic and non-probabilistic context-free grammars
based on a finite-state representation derived from the
Chomsky-Schützenberger (C-S) Theorem (Chomsky and
Schützenberger, 1963). In the representation, a context-
free grammar G is constructed as a combination of a reg-
ular grammar R and a simple context-free grammar that
consists only of balanced parentheses D. The resulting
parser has the same cubic asymptotic complexity and bears
many similarities to the classical Cocke-Kasami-Younger
(CKY) algorithm (Younger, 1967) and the Earley parsing
algorithm (Earley, 1968). It is also very simple to imple-
ment, assuming one has access to algorithms that perform
a basic construction of finite automata. It may also yield
more efficient parsing methods for other (P)CFG-based
systems.

In addition to the basic algorithm, we present another
alternate approach in which we consider modifications and
constraints to the regular grammar R, and bypass the en-
forcement of the proper nesting of constituents D, to yield
a linear time parsing algorithm that approximates the orig-
inal grammar, which may be useful for specific NLP tasks.
This modification is a superset approximation of the orig-
inal grammar G, which can be tightened quite flexibly to

the desired level of approximation.

2. Preliminaries
2.1. Notation

We will employ the standard notation of context-free
grammars: a context free-grammar (CFG) G is a 4-tuple
(ΣNT ,ΣT , P, S), where ΣNT is the set of non-terminal
symbols, ΣT a set of terminal symbols, used in a set of
production rules P of the form A → α where A ∈ ΣNT
and α is a sequence drawn from (ΣNT ∪ ΣT )+. S is a
symbol from ΣNT designated as the start symbol. A CFG
is in Chomsky Normal Form (CNF) if all productions are
of the form A → a or A → BC, where a ∈ ΣT and
{B,C} ∈ ΣNT .

Additionally, we will use short extended regular ex-
pressions to portray regular languages (and finite au-
tomata) and assume familiarity with the notational devices
of L∗, (L ∩ L′), ¬L, (L ∪ L′), LL′, denoting the Kleene
closure of a language, intersection, complement, union and
concatenation of languages, respectively.

2.2. The Chomsky-Schützenberger Theorem
The essential difference between regular grammars and

context-free grammars—that of the possibility of self-
embedding—is captured by the Chomsky-Schützenberger
theorem, which essentially says every context-free gram-
mar is a combination of local constraints on well-
formedness (expressible as a regular grammar), and global
constraints, which reduces to the idea that some elements
must be properly nested.

More formally, the theorem states that for every CFL
G, there exists regular language R and two homomor-
phisms g and h, such that

L(G) = h(g−1(D) ∩R) (1)

where D is a language consisting of different types of bal-
anced parentheses (a Dyck language).

Although the original proof of the theorem did not
do so, the language D can be connected directly to the
context-free grammar in question and characterized in



terms of parenthesis symbols that encode a derivation of
strings in the context-free language. The role of R is to
restrict the occurrence of these parentheses locally, while
D enforces proper nesting. Under such an interpretation, h
is a homomorphism that deletes the parentheses, while g is
a homomorphism that deletes actual terminal symbols ΣT ,
and hence g−1 ‘inserts’ terminal symbols in a language ar-
bitrarily.

2.3. An encoding for CFGs
A way of performing a C-S encoding of a CFL—one

that also yields a constructive proof of the theorem—is
to declare a parenthesis language D over an alphabet Σ()

that contains 2n symbols for every context-free rule in a
grammar, where n is the number of symbols on the right
hand side, and each such parenthesis represents a stage of
derivation of rule. That is, for each rule of the form:

A→ α (2)

we include symbols (1A→α. . . (
n
A→α, and )1A→α . . .)

n
A→α in

Σ() where n is the number of elements on the right-hand
side of the rule, or |α|.

For example, if a grammar includes the rules

A→ BC, B → x, C → y (3)

we include symbols (1A→BC , )1A→BC , (2A→BC , and
)2A→BC for the first rule (and likewise for the subsequent
ones) and encode a derivation:

A

B

x

C

y

(4)

as the string

(1A→BC(1B→xx)1B→x)1A→BC(2A→BC(1C→yy)1C→y)2A→BC

That is, we represent the parse of a string as the brack-
eted preorder traversal of the derivation tree.

The connection to the above theorem is that if we de-
clare a homomorphism h to be Σ() → ε and apply it to the
above string, the result is naturally a string over only the
terminal symbols, namely xy.

Given this, a CFG G with terminal symbols ΣT and
rules of the form A → α, where α is an arbitrary
string of terminals and nonterminals, can be represented
as h(g−1D() ∩ R), where D() is the language of bal-
anced parentheses over the set of parenthesis symbols Σ(),
and R an intersection of five regular languages over Σ =
(ΣT ∪ Σ()), specified as follows:

(a) (1S→αΣ∗ where S is the initial symbol in G

(b) (iA→B1...Bn
 (iBi→C1...Cn

for Bi ∈ ΣNT

(c) )iA→B1...Bn
 (i+1

A→B1...Bn
for i < n

(d) )nA→B1...Bn
 )ANY ∪# for i = n

(e) (iA→B1...Bn
 Bi )iA→B1...Bn

for Bi ∈ ΣT

Here, the notation x  y denotes the idea that any
instance of a symbol x must be immediately followed by
y. Such constraints are clearly expressible as regular lan-
guages. In fact x y can be considered shorthand for the
extended regular expression:

¬(Σ∗x¬(yΣ∗))

We also assume we can declare the constraint to hold
both ways as well, i.e. x! y would denote:

¬(Σ∗x¬(yΣ∗)) ∩ ¬(¬(Σ∗x)yΣ∗)

Also, the abstract symbol # denotes the end-of-string.
The homomorphism g is simply ΣT → ε (delete termi-
nal symbols), and h is Σ() → ε (delete parentheses). The
different regular languages which are intersected encodes
strictly local requirements on the ordering of the paren-
thesis symbols: (b) requires that an open parenthesis be
immediately followed by another open parenthesis repre-
senting the first nonterminal on the right hand side; (c)
enforces that a closing parenthesis representing a nonfi-
nal constituent in a rule be followed immediately by the
opening parenthesis for the same rule; (d) says that any
parenthesis representing any final constituent in a rule be
followed either by any other closing parenthesis or the end-
of-word; (e) says that a parenthesis representing a rule con-
stituent yielding a terminal symbol be followed by that
terminal symbol and a closing parenthesis. Additionally
constraint (a) enforces that any string begin with the start
symbol.1

The constraints as given above would then apply to the
example tree (4) and its string encoding as follows:

3. Parsing with C-S representations
Having in this way made the Chomsky-Schützenberger

theorem more concrete by encoding the parse of a sentence
as a string, we can see that this immediately yields a pars-
ing algorithm for context-free languages.

Suppose that we have a context-free grammar G and
construct from it the regular grammar R as described
in steps (a)–(e) above, and wish to parse a sentence
w1w2 . . . wn. Now we can easily construct a finite-state
automaton Rw encoding h−1(w1w2 . . . wn), that is, an au-
tomaton that accepts only the sentence to be parsed, with
arbitrary sequences of parentheses interspersed (see figure
1, step 1). This is clearly a matter of first constructing an
automaton that accepts only the sentencew1w2 . . . wn, and

1The proof that the constraints are both necessary and suffi-
cient for, together with D, encoding the CFG is a fairly simple
induction, see e.g. Salomaa (1973) or Kozen (1997) for proofs
with similar representations.



subsequently enhancing the automaton with self-loops for
each symbol in Σ(). Now, we can calculate the new fi-
nite automaton Rlocal = Rw ∩ R (step 2), that accepts all
the locally correct parses of the sentence at hand. Obvi-
ously Rlocal overgenerates in the sense that it may contain
invalid parses where parenthesis symbols are out of align-
ment, i.e. not properly nested. However, if we from the au-
tomaton representing Rlocal extract only the set of words
where the parentheses are properly nested, this set equals
precisely the correct parses of the sentence w1w2 . . . wn in
question with respect to the grammar G.

To sum up, the steps in figure 1 are:

(1) Calculate Rw = h−1(w)

(2) Calculate Rlocal = R ∩ h−1(w)

(3) Extract from (2) the set of words where parentheses
are balanced

Step (3), extracting from Rlocal only those words
where parentheses are properly aligned is addressed by al-
gorithm 1.

3.1. The algorithm
The objective of algorithm 1 is to extract all the paths

that contain only balanced parentheses from the finite-state
automaton produced by step (2). To this end, we maintain
an agenda A which contains state pairs. Initially, the only
pairs in A are those where there is a transition from one
state to the other with a nonterminal symbol. From the
agenda A we choose a state pair and expand it to produce
a new state pair if there are transitions on the left and right
with balanced parentheses. This is done in lines 14–16.
We also need to merge pairs P1 and P2 if they represent
parts of the same constituent and P1 forms a word (iα. . .)

i
α

and P2 (jα. . .)
j
α for some rule α by checking if P1 and P2

share a state on the left or right. This is done in lines 8–13.
Note that we do not explicitly need to check the contents
of the words formed by P1 and P2 or that the indices i and
j are such that j = i+ 1 since this has already been taken
care of by the local grammar. Hence, the finite automaton
we are extracting the paths containing balanced parenthe-
ses from will never contain adjacent pairs of states in such
a configuration without the indices and rule components
being compatible. In other words, we need only look at
the state numbers to perform the joining of constituents.
Finally, whenever we encounter a state pair such that one
state is the initial state and the other a final state, we have
found a parse. It is assumed that in lines 17–19 we main-
tain backtraces of the pairs we added to the agenda A so
that the string representing the parse can be reconstructed
as one is found.

4. Analysis
Before we move on to consider enhancements to the

parsing algorithms, let us first briefly analyze the complex-
ity of parsing a sentence.

First, let us represent the size of the local grammar R,
which depends on G, by some constant c. It is worth not-
ing that the constraints (a)–(e) whichR is constructed from

Algorithm 1: EXTRACTBALANCED

Input: FSM = (V,E)
begin1

foreach (p, q) ∈ V where there is a transition2

p
s→ q and s ∈ ΣT do
add (p, q) to A as unmarked3

end4

while there is an unmarked pair in A do5

Choose a pair P = (p, q) from A6

Mark P7

if exists a pair Q = (p′, q′) in A such that8

q′ = p then
add (p′, q) to A as unmarked9

end10

if exists a pair Q = (p′, q′) in A such that11

p′ = q then
add (p, q′) to A as unmarked12

end13

if exists transitions (p′ s→ p), (q t→ q′),14

where s = (iR, t =)jR and i = j then
add (p′, q′) to A as unmarked15

end16

if p ∈ Vstart and q ∈ Vfinal then17

RETURN(BACKTRACE(P))18

end19

end20

end21

are all strictly local, maximally 3-testable languages. This
leads to that the size ofR grows additively with each gram-
mar rule.2

The task of constructing from a sentence to be parsed
the automaton Rw (step 1) takes time proportional to the
length of the sentence, i.e. |w|. When intersecting two
finite automata the result grows as the product of the two.
In this case, since |R| = c and Rw has |w| states, we have
that steps (1) and (2) are of time complexity c|w|, where c
depends on the grammar, i.e. O(|w|).

For the analysis of the algorithm for EXTRACTBAL-
ANCED, let us restrict ourselves to cases where the gram-
mar is given in Chomsky Normal Form. This is reflected in
the automaton produced by step (2) in such a way that the
maximum index i of a bracket (iR representing a rule is 2.
Interestingly, we can thus find an isomorphism between the
algorithm that locates paths that contain balanced paren-
theses in the automaton and the CKY algorithm. That is,
each pair p, q added at lines 8–13 represents a complete
subtree over some span i, j for the sentence to be parsed.
Obviously, the if checks at lines 8–17 take O(1) time as-
suming some suitable indexing of the pairs stored. For any
subparse of a subword of length n there are n− 1 ways of
breaking it up into two constituents (1R. . .)

1
R(2R. . .)

2
R. This

2This additive growth is important since it is indeed possible
to construct many different types of local grammars R that work
correctly in tandem with the balanced-parenthesis-grammar D.
However, not all of them exhibit subexponential complexity as
the construction in this paper does.
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Figure 1: Basic workflow for parsing a CFG or PCFG.

means each possible pair (of which there are n2, n being
the number of states in the automaton) added to A may be
added O(n) times. The total complexity is then O(n3),
and given that the size of the automaton n is proportional
to |w|, also O(|w|3).

In the above, we are not committing ourselves to any
particular queuing strategy for the state pairs in A. There
are many options available of how to proceed in this re-
spect. For instance, lines 2–4 immediately add all the spans
representing the terminals on the agenda after which we
subsequently iterate the search until the agenda is empty.
This is not strictly necessary as one can proceed left-to-
right in the parse by only adding the states representing
the first two terminals in the strings, and then, once A is
empty, add the third, etc. This strategy would correspond
somewhat to Earley’s algorithm (Earley, 1968), and could
avoid some extra work in that it may reduce the construc-
tion of subparses (state pairs) that are not actually parts of
complete parses.

4.1. Weights and PCFGs

In many cases we would like to include treatment of
probabilistic grammars in such a way that each produc-
tion A → α has a weight associated with it, and each
parse therefore also has a total probability associated with

it. This is simply a matter of storing with each A, an asso-
ciated probability, or cost, and handling the maintenance of
the associated subparses accordingly. There are several po-
tential strategies regarding how this could be handled. We
have chosen in our implementation to mark certain transi-
tions in the automaton with a weight. More specifically,
each transition with a symbol (1R carries the weight/cost of
rule R, other transitions carrying cost 0. Obviously, every
correct parse will always include the first opening bracket
symbol for each constituent, and hence it is sufficient to
mark only these.

Naturally, if we are only interested in a single most
likely parse, we can include a Viterbi approximation and
for each A on the agenda, store only the one with lowest
probability (recall from the above that each state pair rep-
resents a combination of a span and constituent).

5. Approximation strategies
So far we have only developed our approach with the

intent of not approximating the grammar G at all, but rep-
resenting it through a combination of regular languages
and balanced parentheses. However, depending on the
grammar at hand, it may be profitable to forgo step (3)—
which has cubic complexity—in the parsing and instead
tighten the local grammar slightly with additional con-
straints. In such an approach we would consider all words
in the automaton from step (2) and disregard the ones with
parentheses out of balance. Of course, this set of words
should be finite for the approach to work.

5.1. An exponential parsing strategy
An obvious, though not efficient alternative to step (3)

in the parsing scheme is to model the language D() as a
regular language. In such a case it is advantageous if the
grammar is given in CNF (Chomsky Normal Form), since
we know the maximal level of nesting expected for a string
of a given length, and can characterize Dreg

() accordingly.
Assuming we have Dreg

() , which depends on the length of
the string w to be parsed, we can calculate:

g−1(Dreg
() ) ∩R ∩ h−1(w) (5)

yielding a regular language that accepts all and only the
valid parse trees for the string w, encoded as a string. In
other words, we perform steps (1) and (2), but instead of
searching the automaton for strings with balanced paren-
theses, we intersect the result with a regular language con-
taining only balanced parentheses (and terminal symbols)
up to some required level of nesting. Unfortunately, ex-
actly characterizing Dreg

() to the required level produces an
exponential growth in the state complexity of the automa-
ton that encodes Dreg

() . Parsing in this manner directly
is clearly infeasible, although the state complexity of the
grammar R may be small (and is a constant) and the state
complexity of h−1(w) is linear in proportion to |w|.

5.2. Adding constraints on productions
Constraints (a)-(e) are both necessary and sufficient for

the Chomsky-Schützenberger representation. As we have
included only the bare minimum of constraints for the C-S



representation to work, the grammar R is very loose in the
sense that the output of step (2) in original parsing strat-
egy severely overgenerates. A reasonable question to ask,
then, is whether additional constraints could be put into R,
producing a tighter grammar, and where the output of step
(2) would be a superset of the valid parses, yet not one
that contains an infinite (or very large number) of parses.
If this were feasible and step (2) would produce a reason-
able number of parses, some of which would be spurious,
we could in linear time produce a set of parse candidates,
which could be pruned by individually checking the proper
nesting of parentheses. If the ratio of spurious parses to le-
gitimate parses in step (2) would be reasonably small (for
a given grammar), it may be worthwhile to skip algorithm
1 altogether and instead just inspect the strings in Rlocal.

One additional constraint, the lack of which causes a
large number of spurious parses in the original parsing
strategy (before step (3)), is to add a long-distance con-
straint that enforces that each opening parenthesis (iR is
some time later in the word followed by the corresponding
closing parenthesis, and vice versa, i.e.

(f) (iR! Σ∗)iR for all rules R and components i

Such a constraint would naturally not enforce the
proper ordering of any of the parentheses, i.e. not rule
out sequences such as (1. . . (2. . .)1 . . .)2, but would still
make the grammar R overgenerate much less. However,
the problem with adding such a constraint is that R grows
very quickly with the number of rules if we add (f) to the
set of constraints in R.

A more prudent strategy then is to modify R so that it
keeps track of parenthesis order and balance to some limit
of nesting: i.e.:

(f’) (iR! Dapprox)iR for all rules R and components i

where Dapprox is the language of balanced parentheses up
to some level of nesting n. This will of course also grow
quickly, but as natural languages rarely exhibit center em-
bedding up to two or three levels (Karlsson, 2007), we as-
sume n will be kept close to this limit. This approximation
limit in (f’) need not be fixed for all types of sentences
and can of course be extended beyond n for some subset
of sentence structures or phrases which are known to oc-
cur frequently and thus need tracking of parenthesis to a
deeper level. This last strategy seems to be the most prof-
itable one to pursue and develop further in view of the very
idiosyncratic nature of natural language parse trees with
little center embedding.

6. Conclusion and further work
We have presented an overall strategy for parsing CFGs

and PCFGs through a representation of a CFG as a combi-
nation of a regular grammar and a grammar of balanced
parentheses. Using this encoding, we present a general
cubic-time algorithm for parsing of arbitrary context-free
grammars, which can also be used for parsing PCFGs. The
resulting algorithm is simple to implement assuming one

can construct finite-state automata from regular expres-
sions.3

Additionally, we have considered the opportunities the
encoding we have presented offers for improving parsing
efficiency by regular approximation that takes into account
idiosyncrasies of natural language CFG representations.

Apart from its direct usability, we also expect the basic
approach to be applicable to a number of recent approaches
that use CFG representations for NL tasks such as lexical-
ized PCFGs (Charniak, 1997) or bilexical grammar parsing
tasks (Eisner, 1997), to name a few.

Having presented an algorithm for parsing CFGs and
PCFGs as well as a finite-state approximation and given
an analysis of the worst-case complexity is obviously not
enough for practical purposes. Many of the gains that
could arrive by using the approximation strategy hinge on
further constraining the local grammar (which is finite-
state) in such a way that it takes advantage of the specific
properties of some natural language grammar at hand—
perhaps one induced from a treebank or corpus. The re-
quired tightness of the local approximation and the re-
lated gains in parsing efficiency are empirical questions
that need to be pursued further with actual large-scale nat-
ural language grammars.
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