Anger and affective instability are key features of borderline personality disorder (BPD). Given the dynamic nature of affect, it is ideally studied using ambulatory assessment (AA). Recently, several major studies have examined affective instability via momentary self-report, using electronic diaries, which participants can use throughout their daily routine. The present study sought to complement this research by using an unobtrusive naturalistic observation method, the Electronically Activated Recorder (EAR). The EAR, which captures interpersonal behavior by periodically recording 50-second snippets of ambient sounds, was worn by 25 participants with BPD who also met the specific affective instability (AI) criterion as well as 13 participants with a depressive disorder (who did not meet criteria for AI or BPD) for three days. Trained coders listened to the captured recordings and rated participants’ affect during each 50-second clip (i.e., in naturally varying social contexts). Results suggested that there were differences between diagnostic groups regarding the social context of anger, such that anger at a previous time interval predicted spending time alone in the subsequent time interval for the depressed group, but not for the BPD group. As an ambulatory observational method, the EAR offers an alternative to self-report and can provide insight into the naturalistic expression of emotions in BPD.
For example, Duncan and Grazzani-Gavazzi (2004) found that 76.7% of reported positive incidents occurred while spending time with other people. The presence of a strong social support network has a number of benefits for individuals, such as reduced risk for depression and other psychological disorders (e.g., Joiner, 2000).

Individuals with borderline personality disorder (BPD) often experience chaotic interpersonal relationships (American Psychiatric Association, 2000), characterized by frequent arguing, increased tension, and repeated breakups (e.g., Labonte & Paris, 1993; Whisman & Schonbrun, 2009). Individuals with BPD also often report an intense fear of abandonment and are sometimes described as experiencing an intolerance of being alone. For example, Stiglmayr and colleagues (2005) found that reports of being alone were one of the primary triggers for experiencing aversive tension in a BPD sample. Further, compared to healthy controls, aversive states persisted for longer periods of time for the BPD group. Another study looking at the interpersonal nature of BPD found that the number of daily interaction partners was reduced among those with the diagnosis as compared to outpatients without an Axis II disorder (Stepp, Pilkonis, Yaggi, Morse, & Feske, 2009). However, the total number of interactions did not differ by group, suggesting that individuals with BPD rely on a limited social network. Although those with BPD are characterized as high in rejection sensitivity (e.g., Ayduk et al., 2008), these results suggest that this sensitivity does not lead to complete social withdrawal among individuals with BPD. Rather, individuals with BPD may reach out to others more in frantic attempts to avoid abandonment after negative social situations (American Psychiatric Association, 2000).

Stepp and colleagues (2009) found that daily interactions reported by BPD individuals were characterized by more anger, disagreement, and anxiety than a non-PD group. Anger is also a central characteristic of BPD (American Psychiatric Association, 2000; Koenigsberg et al., 2002; Morse et al., 2009). Individuals with BPD may become particularly reactive to real or perceived interpersonal slights. Recently, negative emotions such as anger have been described as reactions attributable to negative interpersonal events involving loss or disappointment in the proposed DSM-5 borderline prototype (Skodol et al., 2011). Thus, it is likely that being in the presence of others and being alone prove stressful for individuals with BPD, and it is unclear whether spending time with others decreases overall negative affect and anger in this population.

Like those with BPD, individuals diagnosed with depression often are hypersensitive to social rejection (e.g., Nezlek, Hampton, & Shean, 2000; O’Neill, Cohen, Tolpin, & Gunthert, 2004; Gunthert, Cohen, Butler, & Beck, 2007). In contrast to the impulsive reactivity and anger that is characteristic of BPD (see Goodman & New, 2000), depressed individuals have a more blunted initial response to negative events (Peeters, Nicolson, Berkhof, Delespaul, & deVries 2003). Thus, depressed individuals may not show an immediate increase in negative affect (NA) in response to a
negative interpersonal event, but later ruminate about the event and experience increased and more persistent levels of NA than nondepressed individuals. In addition, the stress generation theory of depression posits that depressed individuals elicit negative reactions and rejection from others (Hammen, 1991; Joiner, 2000; Joiner & Katz, 1999). Consequently, when able to spend time with others, depressed individuals may at least initially experience decreased NA compared to levels of NA when alone. This is likely due both to the delayed negative reaction to negative interpersonal events and the tendency to be socially isolated due to rejection from others. Depression is also associated with increased interpersonal conflict avoidance, submission, and social withdrawal (see Joiner, 2000 for a review); therefore, it seems unlikely that increased anger and hostility would be expressed by most depressed individuals in the presence of others.

Ambulatory assessment methods like ecological momentary assessment (EMA; Shiffman, Stone, & Hufford, 2008) can be used to monitor individuals in their natural environments in real-time (Fahrenberg, 1996). These methods focus on maintaining the ecological validity of assessment and provide multiple assessments per participant. The most common devices used in EMA are electronic diaries/personal digital assistants or mobile phones programmed to prompt participants for self-report responses. However, even traditional EMA approaches may be limited in their ability to characterize interpersonal interactions. For example, reactivity to an electronic diary may influence an ongoing interaction or delay the participant’s response (Barta, Tennen, & Litt, 2012). If a participant is in the middle of a conversation with a friend when he/she is signaled to complete a survey on an electronic diary, (1) the conversation may be interrupted, (2) the participant or interaction partner may comment on the diary, (3) the participant may fill out the survey inattentively while attempting to continue the conversation with the friend, or (4) the participant may refrain from reporting until the interaction is over. All of these possibilities can affect the timeliness and accuracy of responses. Therefore, a different and complementary approach may be warranted.

Mehl, Pennebaker, Crow, Dabbs, and Price (2001) developed the Electronically Activated Recorder (EAR), an observational research device capable of real-time or momentary assessment. The EAR is an audio recording device worn by research participants that periodically samples short segments of ambient sounds (including conversations) in the environment. This mode of ambulatory assessment is ideal for researching interpersonal behavior, social interactions, the affect associated with these interactions, and changes in affect across time and situations. In providing an observer’s point-of-view rather than the typical agent’s point-of-view, the EAR is a methodological tool that has the potential to offer unique information in the assessment of behavior (Mehl & Robbins, 2012). Like other forms of ambulatory assessment, the EAR maintains ecological validity of assessment by recording participants in their natural environ-
ment and by allowing for intensive longitudinal assessments. Also, as an observational alternative to self-report, the EAR has the potential to provide information that participants may be unable or unlikely to report due to limitations in self-awareness, poor recall of events, social desirability biases, and the inability to aggregate information (Nisbett & Wilson, 1977; Wilson & Dunn, 2004). Although the EAR is limited in that it can only assess audible traces of behavior and affect, it bypasses many of the problems associated with traditional observational methods.

The EAR has been used in studies of time allocation (Mehl et al., 2001; Mehl & Pennebaker, 2003), personality traits (Holtzman, Vazire, & Mehl, 2010; Mehl, Gosling, & Pennebaker, 2006), sub-clinical depression (Mehl, 2006) and coping with rheumatoid arthritis (Robbins, Mehl, Holleran, & Kasle, 2011) and breast cancer (Robbins, Focella, Kasle, Weihs, Lopez, & Mehl, 2011). Previous studies using the EAR methodology have assessed the prevalence and pattern of affective behaviors such as laughing, crying, arguing, and sighing (Hasler, Mehl, Bootzin, & Vazire, 2008; Mehl, Gosling, & Pennebaker, 2006; Robbins et al., 2011), and the stability and personality implications of language use conveying positive or negative emotion (Augustine, Mehl, & Larsen, 2011; Mehl & Pennebaker, 2003; Mehl et al., 2006). However, the methodology has yet to be used to assess affect and its context in psychiatric populations, as rated by an outside observer.

The goal of the current study was to determine the relationship between anger and spending time with others among a BPD group and depressed group of outpatients. It was hypothesized that the BPD group would show similar levels of anger when alone versus with others and that the depressed group would show decreased levels of anger when with others. This is based on previous research suggesting that both interpersonal situations and noninterpersonal situations can be stressful for individuals with BPD (Stepp et al., 2009; Stiglmayr et al., 2005) and that depressed individuals show a blunted initial response to negative interpersonal events (Peeters et al., 2003).

METHOD

PARTICIPANTS

All participants previously completed a study assessing affective instability in clinical outpatients diagnosed with borderline personality disorder and depressive disorders (Trull et al., 2008). Two groups of participants were recruited from this sample who met criteria for BPD (BPD group; \(n = 25 \)) or met criteria for MDD or dysthymia without a BPD diagnosis (DD-only group; \(n = 13 \)). In addition, individuals in the BPD group met the DSM-IV-TR affective instability (AI) criterion for BPD, which is defined as “affective instability due to a marked reactivity of mood (e.g., intense episodic dysphoria, irritability, or anxiety usually lasting a few hours and
only rarely more than a few days)” (American Psychiatric Association, 2000). Participants in the DD-only group were excluded if they met the AI criterion of BPD (even in the absence of a full BPD diagnosis). General exclusion criteria for either group included having a psychotic disorder, history of severe head trauma, mental retardation, or severe neurological dysfunction. Individuals between the ages of 18 and 55 were eligible to participate. Demographics of the current sample are shown in Table 1. The sample is predominantly women (89.5%), of Caucasian ethnicity (84.2%), with an average age of 33.32 (SD = 13.26).

ELECTRONICALLY ACTIVATED RECORDER

The EAR is a digital voice recorder that captures brief intervals of sound in the participants’ environments. Participants received a Dell Axim 50 PDA loaded with EAR software with a microphone (OPTIMUS Tie-Clip Microphone) attached that clipped onto their clothing. The EAR recorded approximately 50 times a day between the hours of 9 AM and 11 PM. Specifically, the EAR recorded every 18 minutes for 50 seconds in duration. Participants had an average of 114.76 (SD = 20.69) audio files each that could be coded during the recording hours. Six research assistants were trained in coding the audio files. Coders were blind to the current research hypotheses. The coding process consisted of coding behaviors, using a format similar to the Social Environment Coding of Sound Inventory (SECSI; Mehl, Gosling, & Pennebaker, 2006) and affect, using terms con-

<table>
<thead>
<tr>
<th>TABLE 1. Demographics of Study Sample (N = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gender (Female)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>African-American</td>
</tr>
<tr>
<td>Hispanic</td>
</tr>
<tr>
<td>Caucasian</td>
</tr>
<tr>
<td>Native American</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Ethnicity</td>
</tr>
<tr>
<td>Marital Status</td>
</tr>
<tr>
<td>Single, Never Married</td>
</tr>
<tr>
<td>Married</td>
</tr>
<tr>
<td>Cohabitating</td>
</tr>
<tr>
<td>Divorced or Separated</td>
</tr>
<tr>
<td>Annual Income</td>
</tr>
<tr>
<td>$0 to $25,000</td>
</tr>
<tr>
<td>$25,001 to $50,000</td>
</tr>
<tr>
<td>$50,001 to $75,000</td>
</tr>
<tr>
<td>$75,001 to $100,000</td>
</tr>
<tr>
<td>Above $100,000</td>
</tr>
<tr>
<td>Currently Employed</td>
</tr>
<tr>
<td>Recruitment</td>
</tr>
<tr>
<td>University Student Health Center</td>
</tr>
<tr>
<td>Clinic in General Community</td>
</tr>
</tbody>
</table>

Note. All categories are mutually exclusive.
sistent with the Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988). After training, coders were instructed to listen to each audio file at least twice. It has been suggested that hearing the episode multiple times may reduce the tendency for the coder to focus on the content of the speech rather than voice tone and affect (Johnson, 2002). For the purpose of this study, the behavior of interest was whether or not the individual was coded as in the presence of or with others. The affect items (e.g., calm, afraid, angry) were rated on a scale ranging from 1 (not at all) to 5 (extremely). Raters were instructed to rate on a 1 to 5 scale how angry, hostile, or irritable the participants appeared in any given sound file. Any audible information (e.g., voice tone, content of speech, non-verbal utterances, slamming doors) was used to help inform coders’ ratings. Even when a person was not spending time with others, evidence for anger or irritability may exist if the person was muttering, yelling at the dog, sighing, or throwing things, to name a few examples.

Each participant’s audio files were coded by one rater. Interrater reliabilities for the behavior and affect items were calculated for a sub-sample of the participants \((n = 19)\). A second rater reviewed the audio files for each participant and provided independent ratings for this sub-sample. Reliabilities are reported as intraclass correlation coefficients with the measure of interest being the mean of individual ratings, judge effects modeled as random, and consistency agreement (McGraw & Wong, 1996; Shrout & Fleiss, 1979). Interrater reliability for the anger scale used in the current analyses was ICC = .71 (BPD = 0.71, DD = 0.69). Concerning behavioral codings, interrater reliability for the with-others variable from the modified SECSI was 0.89. It is important to note that EAR coding of anger and with others was not significantly correlated with self-reported BPD or depressive symptoms. Even real-time self-report assessments are not usually highly correlated with retrospective self-report (see Solhan, Trull, Jahng, & Wood, 2009 for a relevant example). Thus, it is likely that we are measuring affective expression that is not redundant with questionnaire assessments of typical mood states.

PROCEDURE

All diagnoses and symptoms were assessed using structured interviews; interrater reliabilities (kappas) for the BPD diagnosis and for the DD diagnosis were 0.85 and 1.0, respectively (see Trull et al., 2008 for more details). Participants who had successfully completed the prior study (and gave permission to be notified about future follow-up studies) were contacted via phone and asked to participate in the current study assessing participants in their natural environment using the Electronically Activated Recorder (EAR). Interested participants were scheduled for an orientation session on a Wednesday (in order to keep day of the week consistent across all participants). At this session, participants received an orientation to the EAR device and instructions on how to wear the EAR. The ini-
tial session lasted approximately 30 minutes. Participants were told that the EAR would record about five percent of their days without them knowing exactly when it is recording, and that the EAR would only record between the hours of 9 a.m. and 11 p.m. Participants were asked to take off the device when showering, working out, or in any other circumstance in which the EAR could be damaged. Participants were further informed that they had the option of removing the EAR if they were uncomfortable wearing it at any point in time. This was done to assuage any concerns the participants may have had regarding invasion of their privacy. Participants documented when they were not wearing the EAR.

Although the participants wore the EAR starting Wednesday evening, the EAR device did not actually begin recording until Thursday morning in order to allow participants time to habituate to the device. Previous research has suggested that initially, for a period of two to three hours, participants go through a period of high awareness of the EAR and this may influence their behavior (Mehl & Holleran, 2007). The following Thursday through Sunday, participants wore the device as often as they were able to do so during waking hours. The EAR stopped recording mid-day on Sunday.1 Participants returned to the lab on Monday for the final session. Research assistants uploaded the audio files and burned a compact disc for the participant containing a copy of their audio files. Participants were given the option of listening to their audio clips at home and requesting that the researchers delete any clips before researchers listened to and coded the audio clips. In the current sample, none of the participants chose to delete any audio clips. Participants were debriefed and compensated $40 for their time.

DATA ANALYTIC PLAN
AGGREGATE EAR BEHAVIOR

The proportion of time each individual engaged in a particular behavior was estimated from raw counts of each coded behavior and the total number of codable sound files. For example, the proportion of time a person spent with others was estimated by adding the number of sound files in which the participant was in the presence of others and dividing by the total number of available sound files for the participant. It is important to note that the individual did not have to be speaking to others and merely had to be in the presence of others for this to be coded as present. Further, given the brevity of each audio file, if the participant was with others for any amount of time during the 50-second clip, they were coded as with others.

1. Due to a programming error, the EAR began recording immediately following the orientation for one participant and stopped Saturday evening. Only Thursday, Friday, and Saturday data were analyzed for this individual to keep the days consistent across individuals.
MOMENTARY EAR BEHAVIOR AND AFFECT

In order to minimize missing data points and to standardize time intervals across all participants, behavior and affect ratings were collapsed into 30-minute intervals. Specifically, sound files between 9 AM and 9:29 AM were collapsed into one 30-minute interval, sound files between 9:30 AM and 9:59 AM were collapsed into another 30-minute interval, and so on. The percentage of time spent with others was estimated for each 30-minute interval by dividing the total number of sound files in which the participant was in the presence of others by the total sound files in the 30-minute interval, and then multiplying by 100. For affect items, the average affect score across the 30-minute interval was calculated. It is important to note that these aggregated data points were based on only 1 to 2 sampled moments since the EAR recorded every 18 minutes. Thus, these data points do not represent a true aggregation of numerous observations in many instances. This technique was simply used as an alternative to imputing data for a 30-minute interval in which at least some data was available. However, for 30-minute intervals in which data were completely missing, data were imputed using a linear interpolation method. Specifically, the midpoint between the prior data interval and following interval point was assigned in the case of a missing data point. For several consecutive missing data points, values were assigned such that there was linear increase (or decrease) in value until the next available data point. For example, if the anger affect rating for one individual at time 1 was 1.25, the anger rating at time 5 was 2.25, and time points 2, 3, and 4 were missing, then values 1.50, 1.75, and 2.00 were imputed, respectively. No data points from a previous or subsequent day were used to impute data. When missing, the with others variable was computed via linear interpolation in the same manner as affect. For instance, if someone was coded as with others 0% of the time in interval 1 and with others 100% of the time in interval 4, and intervals 2 and 3 were missing, than 33.3% and 66.6% would be imputed, respectively. The amount of missing data was 22.9%, including 15.6% attributed to insufficient acoustic information and 2.8% attributed to poor sound recording quality.

REGRESSION ANALYSIS

Simple linear regression analysis was used to test the hypothesis that time spent with others is negatively related to overall anger. A second analytic approach was to conduct multiple linear regression analyses modeled in AMOS 18.0 using a multi-group model comparison method. Specifically, multiple group model comparison was used to test the hypothesis that being with others would be associated with reduced anger more in the depressive disorder (DD) group.
The major hypothesis of the study was that anger ratings for BPD participants would not differ while they were alone versus with others. In contrast, we predicted that DD participants would receive higher anger ratings when alone versus when with others. First, a simple linear regression was conducted predicting mean level anger ratings, across the entire study, from proportion of time spent with others, across the entire study. In others words, each person had one value representing anger and one value representing proportion of time spent with others. The mean anger rating for the BPD group and the DD group was 1.3 ($SD = 0.29$) and 1.4 ($SD = 0.34$), respectively. The mean percentage time spent with others for the BPD group and the DD group was 55.6 ($SD = 16.0$) and 37.7 ($SD = 15.4$), respectively. There was no overall relationship between mean amount of time spent with others and mean anger in the total sample ($n = 38$). However, this type of analysis does not utilize all the information available in an intensive longitudinal dataset. Using an estimate of the proportion of time spent with others at the momentary level (each time point for each person is treated as the unit of analysis), being with others (coded as 1 if with others in all audio files within the interval) predicted lower levels of concurrent anger ($\beta = -0.06, p = .004$) and of subsequent anger in the next 30 minutes ($\beta = -0.04, p = .041$) in the full sample. When modeled separately by group, being with others significantly negatively predicted concurrent anger for the depressed group ($\beta = -0.14, p < .001$) and subsequent anger for the depressed group ($\beta = -0.11, p = .001$), but neither concurrent nor subsequent anger for the BPD group.

Second, a multiple linear regression model was tested in AMOS with concurrent information and information from the previous time point (i.e., previous 30-minute interval) in the same model. As shown in Figure 1, previous anger (lag Anger) and the presence/absence of others in the prior 30 minutes (lag With Others) were added into the model. By including both concurrent and lagged effects in the same model, we can determine if being with others is a protective effect for the depressed group or if a third variable is causing the relationship between the presence of others and decreased anger. For example, we can start to piece together whether depressed individuals express less anger while with others, or whether previous affect and social context leads to social approach or withdrawal. The best fitting model for both groups was unconstrained. The standardized regression weights for each group are presented in Figure 1. For the depressed group, being with others in the past 30 minutes predicted being

2. We re-ran the analyses using only nonimputed data. The parameter estimates are similar to those obtained when imputed data is included. The regression weight from lag anger to current anger (Path E in Figure 1) is reduced in both groups, which may mean that linear interpolation overestimates the stability of affect. However, all other group comparisons and significance of paths remain the same.

3. A detailed overview of the model selection process was not included due to space constraints, but is available upon request.
with others currently, anger in the past 30 minutes predicted current anger, and previous anger negatively predicted being with others currently. For the BPD group, being with others in the past 30 minutes predicted being with others currently, and anger in the past 30 minutes predicted current anger.

Then, in order to test differences between groups, we used a multi-group model comparison approach. Comparisons 1 through 4 each compared the unconstrained model to a model with one specified regression coefficient constrained (see Table 2). This allowed us to test for group differences on a specific path. For example, in comparison 2, all loadings were free to vary between groups except for the parameter estimate representing Lag With Others, where Anger is the dependent variable (denoted by path D in Figure 1). As shown in Table 2, comparisons 3 and 4 were significant. The direct path from Lag Anger to current Anger (comparison 3) was significantly different between groups (χ^2 difference test = 14.01, $p = .001$), indicating that anger is more stable for the depressed group than the BPD group. The direct path from lag Anger to With Others was also significantly different between groups (χ^2 difference test = 6.69, $p = .01$),

![FIGURE 1. Path Model of Anger in the Presence of Others for DD and BPD Group (Standardized regression weights are displayed). *Signifies that the path is significant ($p < .05$) for the indicated group](image)
such that the depressed group was less likely to spend time with others after experiencing anger.4

DISCUSSION
The original hypotheses were partially supported by the current results. The depressed group appears less likely to spend time with others when feeling angry. Specifically, anger was more stable across time for the depressed group, but higher levels of anger were associated with decreased time spent with others. One explanation for this finding is that depressed individuals are anticipating being alone, which results in an increase in anger due to the perceived threat of social exclusion (Steger & Kashdan, 2009). This interpretation is consistent with research indicating that individuals with depression often evoke rejection from others (Joiner, 2000; Joiner & Katz, 1999). Thus, higher levels of anger at one point in time may lead to subsequent social exclusion. An alternative explanation is that when levels of anger are higher, a depressed individual may be less likely to seek out pleasant experiences and more likely to withdrawal socially (Seidel et al., 2010), especially due to the high rate of interpersonal conflict avoidance in depression (Joiner, 2000).

Secondly, there was no significant relationship between being with others in the moment and anger for the BPD group, suggesting that this negative mood state in BPD is not dependent on the topography of interpersonal contexts. However, there was a trend toward an increase in spending time with others following anger for the BPD group. In other words, the mere presence or absence of another did not appear to significantly influence the expression of anger of those with BPD, and anger may have actually influenced seeking out others. Although replication is need-

4. Findings replicated when using overall negative affect. However, we are cautious to interpret this as the reliabilities for other negative affect variables that went into the overall composite (i.e., sadness, guilt, fear), as well as the overall composite, were lower. These are often more internal emotions, and thus, more difficult for a listener to code.
ed, this finding is consistent with previous evidence suggesting that individuals with BPD find being alone quite aversive (Stiglmayr et al., 2005), and they may seek to prevent abandonment by reaching out to others (American Psychiatric Association, 2000). Due to high arousal that often accompanies negative affect in BPD (Ebner-Premier et al., 2008), it may be difficult for individuals to inhibit approach responses when experiencing anger. More research is needed to flesh out the mechanisms behind the approach and avoidance behavior that seems to be following anger in borderline personality disorder and depression, respectively. Further, the sample sizes in the current study differed substantially between groups. It is possible that this study is somewhat underpowered for between group comparisons and within-group analyses for the DD group, specifically. Thus, it is important not to over-interpret null findings in a single study.

Because of the novelty of the EAR methodology and limited knowledge about the psychometric properties of the EAR ratings, there are a number of limitations to using this approach that should be noted. Behaviors that are inaudible as well as internal experiences will be underestimated using the EAR. Concerning the former, White and Dolan (2009) reported that eating was the most frequent behavior or daily activity in an online diary study. However, this event is relatively difficult to detect with the EAR unless additional context clues are available (e.g., waiter at a restaurant taking the order). Likewise, some individuals may experience anger but not express it. In fact, suppression of anger is thought to be related to depression and decreased social support (Gross & John, 2003). Additionally, other affect coding schemes instruct raters to pay attention to nonverbal behavior in addition to voice tone and content of speech (Johnson, 2002). However, nonverbal information such as facial expressions and gestures are not available to raters using EAR data.

An additional issue is the relatively lower levels of negative versus positive affect that occur naturally, regardless of study methodology or of the population sampled. For example, Watson and Clark (1994) reported that people tend to self-report more positive affect than negative affect, regardless of the population under examination. This phenomenon held true even for substance abusing and inpatient samples. Johnson (2002) noted the presence of a floor effect for several negative affective experiences (including defensiveness, aggression, scorn, and frustration) exhibited in marital interactions. Although this is the first study to examine observer rated affect using the EAR, a previous EAR study examining language use found that college students on average use more positive emotion words (e.g., good, happy) than negative emotion words (e.g., hate, ugly) in their everyday speech (Mehl & Pennebaker, 2003). Most recently, Augustine and colleagues (2011) confirmed this positivity bias for both written and spoken language using a more sophisticated linguistic approach. Finally, Hasler and colleagues (2008) found that there was a higher base rate of behaviors associated with positive affect (e.g., laughing, singing) than negative affect (e.g., sighing, arguing). Therefore, the instances and relative
intensity of anger expressions appear to be consistent with previous studies examining the self-reported or expressed negative affects.

Lastly, due to insufficient acoustic information, technical difficulties, or participants not wearing the device at all times, data imputation was necessary. While missing data due to technical difficulties can be assumed to be missing at random, there may be some instances in which participants chose not to wear the EAR. These missing data in the current study lead to more imputation of data than is ideal. However, the imputation of data allowed us to create equal time intervals so that we could examine lagged effects of affect and of interpersonal context.

Despite these limitations, this study has important implications regarding interpersonal responses to anger for individuals with borderline personality disorder or depressive disorders. Although we cannot determine the specific interpersonal mechanisms that are taking place, it seems that when experiencing anger, individuals with BPD do not shy away from others. Furthermore, it is likely that others are aware of BPD patients’ anger and distress, and this may have an impact on these interpersonal relationships. For depressed individuals, the data suggest that higher levels of anger lead to isolation. Further research is needed to determine whether angry increases in anticipation of being alone or rejected, for depressed people, or if anger actively leads to rejection and subsequent social isolation.

REFERENCES

more than we can know: Verbal reports on mental processes. *Psychological Review, 84*, 231–259.

