
FINITE-STATE LANGUAGES AND GRAMMARS.* Let V be a finite vocabulary
of basic symbols (e.g. phonemes, letters, morphemes, words, etc.; anything that is capable of
being concatenated). A string in V is any finite (possibly empty) concatenation of members of V.
The class of finite-state languages in V is defined recursively in (1) through (3) (Kleene 1956,
Chomsky & Miller 1958).
(1) Every finite set of strings in V is a finite-state language in V.
(2) If X and Y are finite-state languages in V, then so is Z, where Z = {z | z ∈ X or z ∈ Y}, or

Z = {x y | x ∈ X and y ∈ Y}.
(3) Nothing else is a finite-state language in V.

For example, let V = {a, b}, and let xn represent the string consisting of n repetitions of the
substring x. Then L1 = {am bn | m, n > 0} is a finite-state language in V, but L2 = {am bn | m > 0
and m = n} is not; L2 is a strictly context-free language in V. [See Context-free Languages and
Grammars.]

The members of the class of finite-state languages in V are generated by the members of the
class of finite-state grammars <N, V, S, R>, where N is a finite set of nonterminal symbols, S ⊆ N
is a set of start symbols, and R is a finite set of rules of the form (4) or (5), where P, Q ∈ N, and x
is a string in V.
(4) P → x Q
(5) P → x

For example, L1 is generated by the finite-state grammar <{A, B}, {a, b}, {A}, {A → a A,
A → a B, B → b B, B → b}}>, whereas there is no finite-state grammar that generates L2. Finite-
state languages are accepted by the class of finite automata, and constitute the smallest infinite
class of languages in the Chomsky hierarchy of formal languages. [See Automata Theory.]

Chomsky (1956) and in many subsequent publications contended that English (and
presumably every other natural language) is not a finite-state language over its vocabulary, on
the grounds that its grammar must contain rules that are not reducible to schema (4) or (5). For
example, to account for the syntactic dependency between the words if and then in a sentence
like if it rains then it pours, English grammar must contain a rule like S → if S then S. If so, and
assuming it contains no other rules regulating the co-occurrence of if and then, then English also
contains the sentences if if it rains then it pours then it pours and if if if it rains then it pours then
it pours then it pours, but not *if it rains then it pours then it pours nor *if if it rains then it
pours. That is, English contains every sentence of the form {(if)m it rains (then it pours)n |
m = n}, but no sentence of the form {(if)m it rains (then it pours)n | m ≠ n}. Hence English is not
a finite-state language.

To counter the obvious objection that speakers of English do not distinguish between the case
of m = n and m ≠ n when m and n are large (they generally reject all such sentences), Chomsky
(1965) introduced the competence-performance distinction, arguing that an English speaker’s
internalized grammar generates all the sentences of the form (if)m it rains (then it pours)n in
which m = n and none in which m ≠ n, and that his or her general inability to process such
sentences for which m and n are large is a cognitive limitation that lies outside of the internalized
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grammar. For the most part, linguists accepted Chomsky’s argument, and their interest in the
theory of finite-state languages and grammars, which was never great in the first place,
languished.

However, certain aspects of a natural language, at least, are completely analyzable using
finite-state methods, in particular its phonotactics (the determination of legitimate sequences of
sounds in natural language; Johnson 1970, Kaplan & Kay 1994), and its morphology excluding
compound formation (Koskenniemi 1983). Despite the fact that in principle morphological rules
can give rise to sets of words that cannot be generated by a finite-state grammar, no such system
for natural languages has ever been discovered (Langendoen 1981). Consequently in the areas of
speech (and orthographic) analysis and of morphological analysis, finite-state methods have
become standard.

The use of finite-state methods in syntax and semantics was somewhat slower to develop, in
large measure due to the belief that these aspects of linguistic structure are not fully analyzable in
those terms. However, partial syntactic and semantic analyses have been carried out using finite-
state methods beginning with the Transformation and Discourse Analysis Project at the
University of Pennsylvania in the late 1950s (Joshi & Hopely 1999). The first serious proposal
that finite-state methods are fully adequate for syntactic analysis was made by Krauwer & des
Tombe (1981), and a sophisticated (augmented) finite-state grammar that handles discontinuous
elements was developed by Blank (1989). For recent surveys of what is now a vast and rapidly
growing field, see Roche & Schabes (1997), Kornai (1999), Nederhof (2000), and Beesley &
Karttunen (forthcoming).
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