TWINCLE: The WINdowing Computational Lin-
guistics Environment .

D, Terence Langendoen, Dept of Linguistics,. The University of Arizona
Clinton L. Jeffery, Dept of Computer Science, The University of Arizona
Jon Lipp, Dept of Computer Science, The University of Arizona

Introduction

The TWINCLE project is an effort to develop a friendly computational environ-
ment for linguists to write and test gramumars for natural languages, by
enabling them to specify the components of those granunars using windowing
tools and high-resolution graphics.! It has long been recognized that the main
hindrance to the development of grammatical models for natural languages of
any reasonable degree of complexity and detail is the inability of linguists and
programmers to understand the complex interrelationships among the various
parts of the model. Providing gFapbicaHeipresentaﬁons of those interrelation-
ships, and the ability to specify grammatical models in terms of those repre-
sentations will enable linguists, even with little or no help from programmers,
to build complex grammatical models to their own specifications,

In this phase of the TWINCLE project, we are designing an environment for
supporting the development of augmented phrase-structure granumars (attribute
grammars or feature-structure grammars) [Alle87], because this formalism is
widely used in computational linguistics, is general enough to provide models
for nearly every currently popular grammatical theory, and is relatively easy to
visualize. Such grammars generally provide a set of terminal elements, which
for our purposes we can identify with lexical entries, each consisting of a lahel
{typically a string representing the conventional appearance of the entry in
text), a lexical class and a set of attributes and values. They also generally
provide a set of nonterminal elements consisting of a grammatical class and a set
of attributes and values, and a set of productions or rules. for combining
terminal and nonterminal elements together into representations (often, but not
necessarily representable as trees, but always as sets of directed, connected
graphs) of linguistic structures of potentially great length and complexity.

' This work was supported in part by the Advanced Telecommunications Re-

search Program of the Department of Electrical and Computing Engineering
and by the Cognitive Science Program of The University of Arizona,

193

D Terence Langendoen
Note
From: Proceedings of the Sixth International Conrference on Symbolic and Logic Computing, ed. by Eric Johnson. Madison, SD: Dakota State University

194 Proceedings of the Sixth International

Choice of Programming Language
Programming Language Alternatives

Certain very-high-level languages such as PROLOG and LISP are traditionally
advocated for work in natural language processing and computational linguis-
tics; such Janguages are characterized by their list processing capabilities,
automatic memory management, and built-in data structures. These features
make them appropriate for exploratory programming and rapid prototyping.
Other languages, such as C, C++, cmahtalk, Actor, and Visual BASIC are more
appropriate for writing programs with extensive graphical user interface
components such as TWINCLE. The TWINCLE project faced strong require-
ments for both exploratory programiming support and extensive graphical user
interface facilities. It also had strong constraints: our limited financial resourc-
es forced us to consider only alternatives that would run with acceptable
interactive speed on an Intel 486 processor and we had a very limited budget
for software.

Neither PROLOG nor LISP was selected because we were aware of no imple-
mentation available that would meet our performance, budget, and user-
interface requirements. Itis possible that such a system exists, but most
high-performance implementations of these languages are expensive and run
only on workstation hardware.

The Intel platform does offer several affordable languages with which to write
user interface software. C and C++ were rejected because they did not offer a
high-enough level of interface to support exploratory programming. Actor and
Visual BASIC suffer from various Jimitations and are not portable across
window and operating systems. Among commerdcially available languages
SmaliTalk comes the closest to meeting our constraints. But although Small-
Taik is highly suitable for rapid prototyping in the hands of expert SmaliTalk
programmers, it has a fairly steep learning curve and implementations of
SmallTalk on Intel systems are neither inexpensive nor exceptionally fast.

The Icon programming language has extensive string and list processing
capabilities that make it a natural choice for text-oriented applications [Gris90].
With the release of Version 8.6, fcon includes a high—ievel interface to the
miouse and graphics capabilities of modern personal computer systems {Jeffo2].
Both local expertise with Icon and its public domain status encouraged its
selection for use in TWINCLE. The project started out using UNIX and X
Window Systern software on the 486; when Icon's mouse and graphics capabil-

Conference on Symbolic and Logical Computing 195

ities were ported successfully to IBM 05/2 2.0, porting TWINCLE to that
environment required almost no changes to the source code.

Selected Features of Icon and Idol

Several features of Icon make it particularly appropriate to the domain of
computational linguistics. These features include:

* Sophisticated string scanning makes it easier to do more sophisticated
lexical and morphological analyses not possible with stock tools based
on regular expressions.

* Direct support for a character-set data type as well as support for more
general heterogeneous data structures with polymorphic operations.

* Sophisticated control structures that support goal-directed evaluation
and control backtracking simplify the implementation of many algo-
rithms.

In addition to these features, the object-oriented extension to Icon called Idol
has features we considered important in a larger-scale effort:

* Classes allow extension of Icon's built-in repertoire of data types in a
way that minimizes functional dependencies between different code
modules. :

* Inheritance aliows new types to be specified in terms of existing types,

encouraging code re-use. In the computational linguistics-domain many
components such as lexical items fail into natural hierarchies such as
hyponymy that can be expressed directly with classes and inheritance.

* Idol also extends Icon with some basic non object-oriented features that
are extremely useful in larger programs that are written in several files,
such as constant declarations and source file inclusion.

Taken together, Icon's symbolic processing capabilities, X-Teon's user interface
support, and Idol's object-oriented model make this environment very appro-
priate for computational linguistics applications.

Lessons learned about Icon and Idol in TWINCLE

Over the course of the project two valuable lessons were learned about Icon
and Idol. The first and most significant result is that Icon’s built-in operations
‘would benefit from greater polymorphism. Polymorphism is the ability to use

196 Proceedings of the Sixth International

one notation or set of operations on more than one type of data. Icon has a
large number of polymorphic operations, and while these are useful we found
that many operations are not as polymorphic as they could be.

For example, during the course of the implementation, we encountered a need
to mix records and tables in our parse trees: records are compact and are used
to efficiently represent lexical items, while tables are more flexible since
arbitrary keys can be inserted into them. Icon's list, table, and record types are
all heterogeneous, that is, structure elements may be any type and in particular
such structures could contain some elements that are tables and some that are
records. '

In addition to this minimal requirement that Icon meets well, mixing records

.and tables requires that the parse engine be able to process nodes pelymorphi-
caily; it applies the same operations irrespective of whether a given node is
represented by a record or a table. In either case, linguistic features of the
node are accessed by string name during parsing. The TWINCLE parse engine
processes nodes irrespective of whether they are leafs represented as records
or internal nodes represented as tables. But record fields are accessed using
the . uperator and tables are subscripted using the [] operator.

What was needed in this application was a way to access records by field
name using a string instead of the . operator - a subscript operation analogous
to table subscripting. The following Icon procedure implements element access
by string name independent of whether its first argument is a table or a
record. '

procedure access(x, s}

if type{x) == "table" then return xis]
f else x is a record
every i := 1 to *x do {
im := image{x{i}) .
if im{*im - *s - 1:0} == *.*]|s then return x
}
end

The problem with this procedure is that it is a slow way of doing a natural
thing. The use of the image() function to obtain the records’ field names is
clumsy. A better solution is to make Icon’s subscript operator more polymor-
- phic to support record field access by string name. Our familiarity with the
Icon implementation allowed us to make this tiny addition. By submitting it
back to the Icon Project, the extension was made available to the rest of the .
icon community as part of Version 8.7, It is likely that increasing the polymor-

Conference on Symbolic and Logical Computing 197

phic behavior of other operations would result in similar improvements in the
expressive power of Icon.

Making additions to a language is not something to be taken lightly however.
Teon’s subscript operator was already defined for records when the supplied
index was an integer, e.g. 1{2] refers to the second field of the record indepen-
dent of its field name. Since Icon automatically converts strings to integers
when necessary, the extension had to make sure it did not conflict with
existing semantics: it can not blindly assume that a record subscripted by a
string is a field name, but must first check to see if the siring can be converted
to an integer and applied as an jnteger index. Since the set of strings that can
be converted to integers is disjoint with the set of strings that make valid
record field names, the addition poses no semantic conflict.

The second major thing we learned about the implementation language used
concerns the object-oriented preprocessor Idol. Idol object instances are very
similar to records—they consist of named fields that may normally be accessed
only by operations defined in the instance’s class. In order to access an
object’s fields the object must support field-access methods.

We wished to use objects for the primary lexical structures in our system in
order to take advantage of the inheritance mechanism. But lexical elements
have a hierarchical feature structure that may be several levels deep. This sort
of structure is very naturally expressed using records. Implementing such a
structure using objects would entail that many field-access procedures be
written, and the end result would be slower than record field accesses.

Since Idol objects are implemented using Icon records, it was a simple matter
to optionally lift the field-access restriction and aliow object fields to be ac-
cessed by normal Icon record field access. This change to Idol compromises its
strict object-oriented nature in favor of increased utility. It does not reduce
Idol's expressive power or object-oriented functionality, but it reduces objects
to more of an organizational tool for Icon programs instead of an all encom-
passing execution paradigm. This might be viewed as 2 Simula-style object or-
ientation instead of a SmallTalk-style object-orientation. The more restrictive
model is still available via an option to the Idol translator.

The Computational Environment

We have integrated working prototypes of five environments for the develop-
ment of attribute grammars. These environments may be used for specifying
the following parts of grammars: lexical attributes, lexical classes, lexical

198 Proceedings of the Sixth International

entries and syntactic rules. The fifth environment is a parser for testing the
grammar developed in the other four environments. We refer to this environ-
ment as TWINCLEQ. TWINCLEQ is written entirely in Icon; we have decided
to defer use of Idol until we have tested the environments on a variety of
smali-scale grammars. TWINCLEO currently runs under the OS/2 operating
system.

When TWINCLED is invoked, a menu appears which allows the user to select
an environment to use, as shown in Figure 1.

“Grammar Dvelacr Library: test]

Lexical Attribute Developer

lexical Class Developer

Rule Developer

Lexical Entry Developer

Parser

Load Library
Save Library
Quit

Figure 1, Main Menu

After completing work in any environment, one is returned to the main menu,
from which one may also exit the program.

Conference on Symbolic and Logical Computing 199

The Lexical Attribute Environment

The lexical attribute environment is the place where one specifies atfributes
and their possible values for lexical items generally. The environment prompts
the user for a label for each lexical attribute (its name), and the type of its
values. Five types of atiribute values are permitted: binary (boolean), numeric,
symbolic, and structured. One selects the type from a pop-down menu, as
shown in Figure 2, where binary has been chosen for the attribute PROPER. If
binary is chosen as the value type for a particular lexical attribute, then the
possible values true and false are supplied for that attribute. As Figure 2 also
shows, a scroiling window lets the user see the lexical attributes that have
already been defined.

DEFI:]'E Qul]t Atlrlhulcs:

Labe}: [PROPER l

structure

Figure 2. Lexical attribute developer showing selection of binary-valued atiribute

If one selects the symbolic type, then a window appears for editing the pos-
sible symbolic values that the particular atiribute may have. In Figure 3, we
show the point at which the user has specified the possible values sing and
plural for the atiribute NUM.

If one selects the structured type, then one is prompted for the atributes that
may appear as the values of the structured attribute. Only previously defined
lexical attributes may be selected, as shown in Figure 4, in which the struc-
tured attribute SUBJ takes on as its possible values the attribute NUM and its
associated values, The numeric and string atiribute types have not yet been
implemented.

200 Proceedings of the Sixth International

% SGramnar - Deve] ifior

Lexical Attribute Devlper Likrary: teaﬂ

{DEFINE] E&T{] Defined

Attributes:Jg
Label:

Type @ [symbolic W)

Symbollc Values:

Edit _
g |
Delote 2: iplural

Okay
Cance!

Figure 3. Lexical

atiribute developer showing selection of symbolic-valued attribute

xlcal Attribule vciapcr Library: testl

[l Defined
DEFINE| |0uit Attributes;

Label: [S0BJ]
Type: : :

Chooge Attributes:

Figure 4. Lexical auxibuteﬂdevo‘z}oper showing selection of structured-value attribute

Conference or Symbolic and Logical Computing 201

The Lexical Class Developer

The lexical class developer is the environment in which one specifies lexical
classes and their assodiated attributes. As Figure 5 shows, one is prompted for
the label of the lexical class, and a scroliing window shows the previousty
defined attributes, from which one selects the attributes that are desired for the
particular lexical class. The already defined classes are shown in a scrolling
window off to the right. In this iliustration, the label of the class is N, and the
attributes that are about to be selected for it are TAKEMOD, PROPER, and
NUM (the first two of which have been previously defined to be of binary type,
and the third to be of symbolic type

i #loj

Lexical Class Developer Library: testl
BEFINE] foult] gflncd'
tabel: [|
Attributes: A

Figure 5. Lexical class developer showing a specification for the lexical dlass N

The Lexical Entry Developer

The lexical entry developer environment permits the user to specify lexical
entries as belonging to particular lexical classes with particudar lexical attrib-
utes and values. In this environment, the user must provide a label for the
lexical entry, and must select a class from one of the classes defined in the
lexdcal class developer; these are displayed in a pop-down window. Once the
class is selected, the labels for all of the atiributes defined for that class are
displayed, and one may specify values for each of them. The previously
defined possible values are displayed in pop-down windows, as illustrated in
Figure 6, in which the pop-down window for the values of the NUM attribute

202 Proceedings of the Sixth International

is shown, Ina scrolling window off to the right, the already defined lexical
entries are displayed. _

X Gramimar Develupier:
Lexical Entry Deveioper

lerar: testl

DEFINE [ous:[Befined A](he
- Lexical B

Label: [Jon —} Entrles; E

Clags: m

Attributes:

TAKEMOD:

PROPER: [True 1)
RUN: (sTag]

Figure 6. Lexical entry developer showing specification of the entry Jon

We have not yet implemented a lexical entry editor, so that at the moment the
only way to redefine a lexical entry is to reenter it from scratch. If one does
s0, TWINCLED asks whether You want to replace the previously defined entry
with the new one, as shown in Figure 7.,

Lexical Entry clpr rary: testl

[—— E—I Befined [ATthe
t i
DEFINE| |Qui Lexical B
Labet: [Clint 1 Entries: E
Clasg:

Attribg Lexicsl entry atready defined. Replace?

Cve %]
B

A

Figure 7. Lexical entry developer showing prompt to repiac:e previcusly defined enlty

Conference on Symbolic and Logical Computing 203

The Rule Developer

Given a set of lexical entries, TWINCLEQ provides a syntactic rule developer
environment for specifying rules for combining them into larger expressions
and for combining these results further, until the Jargest linguistically definable
entities are created. At the outset, the only rules that one can write are those
that combine lexically-defined classes, so that one has to start the process of
rule writing from bottom up.

The rule developer environment is in two parts. In the first part, called the
rule specification environment, the user specifies the arity of the rule (the
default arity is 2), and the labels of its children (the elements that would
appear on the right-hand side of the rule if it is written as a phrase-structure
rule}. The labels that TWINCLEO knows about are displayed in pop:down
windows assoclated with each child. In Figure 8, the user has selected the
labels Def and N. As rules are added to the grammar, and new labels for
syntactic categories are defined, the new labels appear in these windows.

i, i e

Rute Developer - Rule Specification Library: test)

0k I Quit

Rule Arity:
child 1: [Det 1Y)
child 2: [N__¥]

Figure 8. Specifying the children of a syntactic rule

The second part of the rule developer is called the test formulation environ-
ment; it enables the user to supply the label for the parent of the rule (the
element that would appear on the left-hand side of the rule if it is written as a
phrase-structure rule; this properly belongs to the rule specification environ-
ment, and we will be moving it soon to that window). In this environment
also, the user indicates from which child the parent inherits attributes (Le.,
which child is the head of the construction), and may specify a pointer from
the parent to a non-head child. Moreover, the user may specify tests of two
sorts, by selecting the specify tests option. One type of test is a simple value
test, in which a particular atfribute in one of the children is required to have a
certain value. The other is an equality test, in which two attributes (typically,
but not necessarily, in different children) are required to be the same. In

204 Proceedings of the Sixth International

Figure 9, we show the development of the rule NP
identified as the head, Det is identified as the value
the NP, and the NUM attributes of the Det and the

—> Det N, in which N is
of the SPEC attribute of
N are required to be equal.

Al d v

§
Ruic Developer Tes

Library:
lDEFﬂE“DIsp!ay Tesls”Llsl Ru!e;I Specify Tests
Parent Label;]E ;Chltliren: Det N

foherit attributes from child:

Non-head pointer child: tabet:

take Tent| |Abort Test

KX | ([raxeno)
o

¥
t Formulation

Figure 9. Rule developer showing specification of the rule NP ~> Det N

The test formulation environment aiso enables the user to display the tests that
have already been defined for the rule so far (Figure 10), and the rules that
have already been defined at the point the request is made {(Figure 11).

Cramniar g Vovils ;';i_gi.! e
Rulz Developer Test Formulatlon

IDEFIHE Display Test

Parcnt Lsbel: [N

Library: testl

#ilLIst Rules| Specify Tests

inherit atteibut] Tests Defined:
Mon-head polnter| {1) HM(Det) = MU{N}
{2] PROPER{N] = false

|-

Figure 10. Test formulation environment, showlng teste already defined

Conference on Symbolic and Logical Computing 205

S e D e
Rule Developer Test Formuiation
ey
[m’-}'lﬂﬁl Display Tes¥
Parent Label: ‘ﬂ | Defined Rules:
trherit attributes flg > W VP

Noh-head painter chlyp -> Det N

Koke Tes!‘ lAburt Te|| NP -> N
Taxemon [True 1w | 8" > €8
pROPER____ W] | five >V
w1V VP > V NP
[speciizbet: vet]| |y, v po
VP > VNP PP
VP -» VS
VP > ¥ §'
PP > P NP
pe -» P

Figure 11. Test formulation environment, showing rules already defined

The Parser

TWINCLEO incorporates a simple chart parser for augmented phrase-structure
grammars [Kay86]. In the parsing environment, one must select a goal class,
and enter a string. If the parser can analyze the string as an instance of the
class, then the parse is displayed as a tree, with the nodes labeled by the labels
of its constituents, as shown in Figure 12, where the goal is specified as 5, and
the string to be parsed is Jon sleeps. If one clicks on any node in this tree, then
the attributes associated with that node are displayed in a superposed win-
dow, as shown in Figure 13. A more elaborate example is shown in Figure 14.

206 Proceedings of the Sixth International

Parse @ |Jon sleepd

[+ 1 [V]

Figare 12. Parse of Jou sleeps as an Instance of the class §

Conference on Symbolic and Logical Computing 207

Gos| Class: W

Parse : |

{ahel: Jon sleeps

Class: §

tevel: 1

Attributes:
SUBJSNUM=sing -

TAKECOMP=faise
[: TAKEORL =fnlse
TAKEOR]=falue

Figure 13. Display of attributes of root node of tree in Figure 12

208 Proceedings of the Sixth International

Grammar Devéliper | £
fioal Class:

Exlt Parser|

Figure 14. Hlustration of a more elaborate parse tree

References

fAlles7] Allen, }. Natural Langunge Understanding. Menio Park, CA: Benja-

min/Curmnmings, 1987.

[Gris90] Griswold, RE. and Griswold, M.T. The Icon Programming Lan-
guage, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1990.

[Jeffo2] Jeffery, C.L. X-Icon: An Icon Window Interface. Technical Report
91-1¢, Department of Computer Science, University of Arizona,
February 1992.

[Kay86]

Kay, M. "Algorithm schemata and data structures in syntactic
processing”, in Grosz, BJ., Sparck-Jopes, K. and Webber, BN.,

eds., Readings in Natural Language Processing, pp. 35-70. Los Altos,
CA: Morgan-Kaufman, 1986.

