Steps toward global interoperability for language resources

D. Terence Langendoen Professor Emeritus of Linguistics, University of Arizona & Program Officer for Linguistics, National Science Foundation

Scope of paper

- Language resources
 - Language descriptions including glossed texts, treebanks, lexicons, grammars, etc.
- Interoperability
 - For feature-based analyses and descriptions (FADs), i.e. those making use of features (attribute-value pairs) and structured objects comprised of features.

Outline

Features

–Feature systems

-Sharable feature systems

Feature structures

-Feature-structure systems

-Sharable feature-structure systems

A feature system (F-system) F_A consists of:

- 1. a set V_A of two or more features for a particular attribute A that are distinguished by their values, and
- 2. the subsumption relation \sqsubseteq , a partial ordering over the members of V_A.
 - My discussion here is limited to attributes with "symbolic" values (Langendoen & Simons 1995), at least two of which are atoms as described in the next slide.
 - F_A is an implication structure in the sense of Koslow (1992).

Binary F-systems

- The simplest F-systems have exactly two features that do not subsume each other, and are not the disjunctions of any other features in their systems. Such features are atoms, e.g.
 - 1. sg = [Number Singular]
 - 2. pl = [Number Plural]
- Such a "binary" F-system may also contain the disjunction and the conjunction of the atoms, e.g.
 - 3. $sg|pl = [Number Singular|Plural] = \top$ "top" or "verum"
 - 4. $sg\&pl = [Number Singular\&Plural] = \bot$ "bottom" or "falsum"

Example binary F-systems

- The next three slides diagram the F-systems $F_{\rm N4},\,F_{\rm N3}$ and $F_{\rm N2},$ for the Number feature sets:

$$V_{N4} = \{ sg, pl, \top, \bot \}$$

$$V_{N3} = \{sg, pl, \top\} \text{ (omitting } \bot)$$

$$V_{N2} = \{sg, pl\} \text{ (omitting } \top, \bot)$$

- -In these diagrams, the arcs derivable from the reflexivity and transitivity of the subsumption relation are not shown.
- -F_{N4} represents the closure of a two-atom Number system with respect to conjunction, disjunction and negation, and so is a **maximal** Number system with two atoms.

Read the subsumption arcs downwards for conjunction, and upwards for disjunction. The negation of a feature is the feature appearing in its "reflection" using the x or y axis as a mirror, so that *sg* and *pl* are negations of each other (i.e. $sg = \sim pl$ and $pl = \sim sg$), as are \top and \bot .

F_{N3} is a nonclassical F-system in which \top has no negation and there is no conjunction of *sg* with *pl*.

9 January 2008

 F_{N2}

sg

F_{N2} is a nonclassical F-system in which there is no conjunction or disjunction of *sg* with *pl*. However, *sg* and *pl* continue to be each other's negations.

pl

9 January 2008

Interoperability for binary F-systems

- Achieving interoperability for FADs using binary F-systems requires agreement concerning:
 - attribute names,
 - identity of the two atomic values for such features, and
 - interpretation of \top if used.
 - In such F-systems, \top may represent either:
 - underspecification of a binary feature's value, or
 - uncertainty about that feature's value.

Outline

Features

-Feature systems

-Sharable feature systems

- Feature structures
 - -Feature-structure systems

-Sharable feature-structure systems

Binary F-subsystems of larger Fsystems

- Suppose the binary F-system F_{N4a} is proposed for some language, which is just like F_{N4}, but with pa = [Number Paucal] and mu = [Number Multal] replacing sg and pl respectively, and it is agreed that sg, pl, pa, mu, ⊤ and ⊥ are all possible values for the Number feature across FADs.
 - Then there is a larger F-system of which $\rm F_{N4}$ and $\rm F_{N4a}$ are binary F-subsystems.
 - Merging these subsystems, assuming that $sg \sqsubseteq pa$ and $mu \sqsubseteq pl$, yields the F-system F_{N6} diagrammed in the next slide.

F_{N6} is not a binary F-system because it contains more than one pair of atoms, in fact four: {sg, pl}, {pa, mu}, {pa, pl} and {sg, mu}.

Continuing the process

- Next, suppose an F-system is proposed and accepted, which is a subsystem of the maximal ternary F-system F_{N8} over the atoms *sg*, *du* = [Number Dual], and *mu*, as diagrammed in the next slide.
- Then if the identification of *pa* with *sg*|*du*, and *pl* with *du*|*mu* is also accepted, F_{N6} together with all the other Number F-systems considered so far, and many others, are all F-subsystems of F_{N8} .

 F_{N6a} , which differs from F_{N6} only in the occurrence of du, where F_{N6a} has mu, is diagrammed in the next slide.

 F_{N6a} is a nonclassical F-system in which the laws of double negation and excluded middle fail, since $\sim du = pl$, not du, and $du | \sim du = pa$, not \top . 9 January 2008 Terry Langendoen, Steps toward global

interoperability for language resources

16

Sharable F-systems (SF-systems)

- An F-system F_{Amax} , such as F_{N8} , obtained by:
 - merging the F-systems of a language attribute A, and
 - forming the closure of over the atoms of the result does not necessarily represent a system associated with any FAD.
- Rather it is to be thought of as a "sharable" Fsystem (SF-system) that has the capacity to contain every FAD's F-system over A as a subsystem.

Size and structure of SFsystems

- An SF-system with *n* atoms contains 2^{*n*} features, and converges on 2^{2^{*n*}} F-subsystems in the limit.
 - F_{N4} has 2 atoms, 4 features and 4 F-subsystems.
 - F_{N8} has 3 atoms, 8 features and 210 F-subsystems.
 - As *n* increases, perhaps some features with disjunctive values can be deprecated, sharply reducing the number of "linguistically significant" Fsubsystems.
 - "Defective" F-subsystems, as in the next slide, may also be deprecated.

 F_{N3a} is a defective F-subsystem of F_8 because the disjunction of its atoms $\neq \top$ in F_8 . On the other hand F_{N3} , diagrammed in slide 8, is not defective because the disjunction of its atoms = \top in F_8 .

Choice of F-subsystems

- Analysts' preference for relatively unstructured ("flat") F-subsystems, as expressed, for example at the 2005 E-MELD workshop, does not imply that SF-systems should also be relatively unstructured.
- F-subsystems of any desired degree of flatness are easily obtained from a highly structured SF-system; an example is given in the next slide.

sg du mu

F_{N3b} is a perfectly "flat" F-subsystem of the SF-system F_{N8} .

9 January 2008

SF-systems provide interoperability over FS-subsystems

• They provide an explicit basis of comparison of F-systems.

– Are they the same?

- If not, exactly how do they differ?

- They provide support for structured queries and inferencing.
- They enable one to predict consequences of changes to analyses.

Outline

Features

-Feature systems

-Sharable feature systems

• Feature structures

-Feature-structure systems

-Sharable feature-structure systems

A feature-structure system (FS-system) $FS_{A \times B}$... consists of:

- 1. A subset $W_{A \times B...}$ of the union of \bot with the Cartesian product $V_{A \times B} = V_A \times V_B \times ...$ of the features of two or more F-systems F_A , F_B , ... that all lack \bot ;
- 2. the subsumption relation \sqsubseteq , a partial ordering over the members of $W_{A \times B...}$.
 - $a_1 \times b_1 \sqsubseteq a_2 \times b_2$ in $W_{A \times B}$ iff $a_1 \sqsubseteq a_2$ in F_A and $b_1 \sqsubseteq b_2$ in F_B .
 - $\bot \sqsubseteq a \times b$ for every a in V_A and b in V_B .

Doubly binary FS-systems

- The simplest FS-systems result from taking the Cartesian product of the members of two binary F-systems.
- If the two F-systems are maximal (except for ⊥), ⊥ is included, and W_{A×B} = V_{A×B}, the resulting maximal double binary FS-system contains 2×2 = 4 atoms and 2⁴ = 16 FSs.
- The smallest double binary FS-system has 2 atoms and 2 FSs.

Examples of doubly binary FSsystems

- The next three slides diagram the doubly binary FS-systems $FS_{(G3xN3)\cup\perp},\ FS_{(G3xN3)a},\ FS_{(G3xN3)b}$ where:
 - $\label{eq:VG3} V_{G3} = \{f = [Gender \ Feminine], \ m = [Gender \ Masculine], \ \top \} \\ V_{N3} = \{sg, \ pl, \ \top \}$
 - $-FS_{(G3xN3)u\perp}$ is a maximal doubly binary FS-system.
 - $FS_{(G3xN3)a}$ is a subsystem of $FS_{(G3xN3)u\perp}$ in which all the explicitly disjunctive FSs have been removed.
 - $FS_{(G3xN3)b}$ is a subsystem of $FS_{(G3xN3)\cup\perp}$ containing two atoms only.

$f \times sg$ $m \times \top |\top \times p| = \sim (f \times sg)$

9 January 2008

Paradigmatic structures as FSsystems

- A linguistic paradigm can be described as an FS-system.
 - For example, an inflectional paradigm for:
 - 3 atomic genders,
 - 2 atomic numbers and
 - 4 atomic cases

is a subsystem of a maximal FS-system containing 2²⁴ FSs.

 The number of possible such subsystems approximates 2^{2²}!

Outline

Features

-Feature systems

-Sharable feature systems

• Feature structures

-Feature-structure systems

-Sharable feature-structure systems

Sharable FS-systems (SFS-systems)

- An SFS-system can be obtained by taking the Cartesian product of the features of its component SF-systems, other than ⊥, and reintroducing ⊥ at the end. FS_{(G3xN3)U⊥} would be an SFS-system if its components were SF-systems.
- As we've already seen, such SFS-systems can be very large, and the number of FS-subsystems is exponentially larger.
 - To make the use of SFS-systems practical, a means for massively pruning them would have to be developed and accepted.

SFS-systems provide interoperability over FS-subsystems

- The virtues enumerated in slide 22 for SFsystems carry over to SFS-systems.
- To the extent that linguistic analyses are expressible with FS-subsystems of the sort described here, SFS-systems can be used to compare, query, and modify those analyses.

References, acknowledgment and disclaimer

• References

Koslow, Arnold (1992) A Structuralist Theory of Logic. Cambridge University Press.

Langendoen, D. Terence & Gary F. Simons (1995) <u>A rationale for the</u> <u>TEI recommendations for feature-structure markup</u>. *Computers and the Humanities* 29: 191-209.

• Acknowledgment

I read an earlier version of this paper entitled "Elementary reasoning with features" on 11 Dec 2007 at the University of Surrey. I thank the members of that audience for many helpful suggestions.

• Disclaimer

This material is based in part upon work supported while I was serving at the National Science Foundation. Any opinion and conclusions are mine and do not necessarily reflect the views of the National Science Foundation.