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Overview: Modals
• In the first part of this talk I present a 

“structuralist” account of modal (necessity 
and possibility) operators that characterizes 
them exclusively in terms of their roles in 
entailment. 

– The discussion is based on Arnold Koslow, A 
Structuralist Theory of Logic, Cambridge 
University Press, 1992.

– It includes consideration of epistemic, deontic and 
quantificational modals, and an exploration of their 
interactions.
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Overview: Quasimodals

• In the second part, I provide a Koslow-
style analysis of “quasimodal”
(quasinecessity and quasipossibility) 
operators that are distinct from but are 
closely related to modals.

• I define several types of quasimodals and 
explore their interactions with each other 
and with true modals.
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Modals

1. Entailment structures
2. Modal essentials
3. Varieties of modality
4. Interactions between varieties
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Definition of entailment structure
• E = <S, ⊧> is an entailment structure, where S is 

a set and ⊧ is an entailment relation over S.
• ⊧ obeys standard (Gentzen) axioms for 

reasoning:
1. Projection (Reflexivity is a special case.)
2. Simplification (Repetition of premises may be 

eliminated.)
3. Permutation (Order of premises doesn’t matter.)
4. Dilution (Thinning, Monotonicity – follows from 

Simplification and Cut)
5. Cut (Transitivity is a special case.)
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Example of an entailment structure

• Let S⁴ be the set of bit strings of length 4 = {0000, 
0001, ..., 1110, 1111}.

• Let ⊧¹ be the relation that preserves 1 in each of 
the four positions in the bit string:
– p1, ... pn ⊧¹ q iff whenever every pi (1 ≤ i ≤ n) has 1 in 

some position, then so does q.
• Then E⁴¹ = <S⁴, ⊧¹> is an entailment structure that 

can be diagrammed as in H⁴¹ on the next slide, 
where the arcs, representing one-premise 
entailments, are to be read upward (reflexive arcs 
omitted). ⊤ represents “top” and ⊥ “bottom”.
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Hasse diagram H⁴¹ of E⁴¹
1111 = ⊤⁴¹

0111 1011 1101 1110

0010 0100

0011 0101 0110 1001 1010 1100

10000001

0000 = ⊥⁴¹
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E⁴º = Ê⁴¹, the dual of E⁴¹

• H⁴¹ can also be interpreted as representing 
E⁴º = Ê⁴¹, the dual of E⁴¹, by reading the 
arcs downwards, e.g. 1010 ⊧º 1000.

• The dual entailment relation ⊧º preserves 0 
in each position in the bit string.
– p1, ... pn ⊧º q iff whenever every pi (1 ≤ i ≤ n) has 

0 in some position, then so does q.
– 0000 = ⊤⁴º and 1111 = ⊥⁴º. 
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Defining properties of modals
□ Necessity (“box”)

1. □ preserves entailment in E. For all p1, ..., pn, q ∈ S:
• if p1, ..., pn ⊧ q, then □p1, ..., □pn ⊧ □q

2. □ does not preserve entailment in Ê  (dual of E). For 
some p1, ..., pn, q ∈ S:
• if p1, ..., pn ⊧^ q, then □p1, ..., □pn ⊭^ □q.

◇ Possibility (“diamond”)
1. ◇ preserves entailment in Ê. For all p1, ..., pn, q ∈ S:

• if p1, ..., pn ⊧^ q, then ◇p1, ..., ◇pn ⊧^ ◇q.
2. ◇ does not preserve entailment in E. For some p1, 

..., pn, q ∈ S:
• if p1, ..., pn ⊧ q, then ◇p, ◇q ⊭ ◇r.

April 7, 2006 Modals & Quasimodals 10

Interdefinability of □ and ◇

• ◇ is the dual of □, so is definable in terms 
of □ and negation as follows:
– ◇p ⇔ ¬□¬p

• Similarly, □ is the dual of ◇, and is 
definable in terms of ◇ and negation as 
follows:
– □p ⇔ ¬◇¬p
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Modals in E⁴¹

• □⁴¹ is defined for E⁴¹ as follows.
1. □⁴¹p = ⊤⁴¹ if p = ⊤⁴¹
2. □⁴¹p = ⊥⁴¹ otherwise

• ◇⁴¹ is defined for E⁴¹ as follows.
1. ◇⁴¹p = ⊥⁴¹ if p = ⊥⁴¹
2. ◇⁴¹p = ⊤⁴¹ otherwise

April 7, 2006 Modals & Quasimodals 12

□⁴¹ and ◇⁴¹ satisfy definitions □1 and ◇1

• □⁴¹ preserves entailment in E⁴¹.
– Suppose p1, ..., pn ⊧¹ q, where q = ⊤⁴¹. 

• Since □⁴¹q = ⊤⁴¹, □⁴¹p1, ..., □⁴¹pn ⊧¹ □⁴¹q for every p1, ..., pn ∊ S⁴
– Otherwise, q and at least one of the premises pi contain 

0 in a certain position, so that □⁴¹pi and □⁴¹q = ⊥⁴¹. 
• □⁴¹p, ..., □⁴¹pn ⊧¹ □⁴¹q follows from the projection axiom.

• ◇⁴¹ preserves entailment in E⁴º.
– The arguments are similar.
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◇⁴¹ and □⁴¹ satisfy definitions ◇2 and □2

• ◇⁴¹ does not preserve entailment in E⁴¹.
– 0111, 1000 ⊧¹ ⊥⁴¹
– Since ◇⁴¹0111 = ◇⁴¹1000 = ⊤⁴¹, and ◇⁴¹⊥⁴¹ = ⊥⁴¹, 

then ◇⁴¹0111, ◇⁴¹1000 ⊭¹ ◇⁴¹⊥⁴¹
• □⁴¹ does not preserve entailment in E⁴º.

– The argument is similar.
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◇-over-□: A special modal law

• Certain entailment structures support 
modal systems that obey additional 
“special” modal laws, while others do not. 
One such special law is:

1. For all p ∈ S: ◇p ⊧ □◇p
– From (1) and the general modal law ◇□p ⊧ ◇p, 

it follows from the transitivity of ⊧ that:
2. For all p ∈ S: ◇□p ⊧ □◇p

• Let us call (2) the “◇-over-□” law.
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□⁴¹ and ◇⁴¹ obey ◇-over-□

• To show that □⁴¹ and ◇⁴¹ obey ◇-over-□, 
we need to consider three cases.
1. p = ⊤⁴¹: ◇-over-□ reduces to: ⊤⁴¹ ⊧⁴¹ ⊤⁴¹.
2. p = ⊥⁴¹: ◇-over-□ reduces to: ⊥⁴¹ ⊧⁴¹ ⊥⁴¹.
3. ⊥⁴¹ < p < ⊤⁴¹ : ◇-over-□ reduces to: ⊥⁴¹ ⊧⁴¹ ⊤⁴¹.

• Next we consider two modal systems of 
linguistic interest that obey ◇-over-□, and 
one that does not.
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Epistemic modals

• Let Eπe = <Sπ, ⊧e> be an entailment 
structure where Sπ is a set of propositions 
and ⊧e supports reasoning with epistemic 
modals.
– Epistemic necessity (□e):

• □ep is true iff p ∈ Sπ is certain.
– Epistemic possibility (◇e):

• ◇ep is false iff ¬p ∈ Sπ is certain.
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□e and ◇e satisfy the definitions of 
□ and ◇

• Demonstration is similar to that for □⁴¹ and ◇⁴¹
in slides 13 and 14.

• Note that if the set of logically necessary (□l) 
propositions (the set for which □lp maps to ⊤e) 
is a subset of the epistemically necessary 
ones, then □lp ⊧e □ep ⊧e ◇ep ⊧e ◇lp, i.e. □e and 
◇e are “between □l and ◇l.
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□e and ◇e also obey ◇-over-□
• There are three cases to consider:
• p is certain:

– ◇e□e p ⊧e □e◇ep holds because both premise and 
conclusion are true.

• ¬p is certain: 
– ◇e□e p ⊧e □e◇ep holds because both premise and 

conclusion are false.
• Otherwise:

– ◇e□e p ⊧e □e◇ep holds because the premise is false 
while the conclusion is true.
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Quantifier modals

• Let Enq = <Sn, I, ⊧q> be a first-order 
(extended) entailment structure, where Sn

is a set of sentences with up to n open 
places (n ≥ 0), and I is a set of individuals 
with at least two members.
– The universal quantifier ∀xi is a necessity 

modal □q, mapping from Sn to Sn-1 (1 ≤ i ≤ n).
– The existential quantifier ∃xi is a possibility 

modal ◇q, mapping from Sn to Sn-1 (1 ≤ i ≤ n).
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∀ and ∃ are interdefinable using 
negation, and also obey ◇-over-□

• Interdefinability of ∀ and ∃ using negation
– ∀xPx ⇔q ¬∃x¬Px
– ∃xPx ⇔q ¬∀x¬Px

• The principle ∃x∀yPxy ⊧q ∀y∃xPxy
instantiates ◇-over-□ for first-order logic.
– there is some girl who likes every boy ⊧q

every boy is such that some girl likes him
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Deontic modals

• Let Eαd = <Sα, I, ⊧d> be an (extended) 
entailment structure, where Sα is a set of 
open action sentences, I a set of individuals 
capable of acting as agents, and ⊧d supports 
reasoning with deontic modals.
– Deontic necessity (□d):

• □dPa is true iff a ∈ I is required to do P ∈ Sα.
– Deontic possibility (◇d):

• ◇dp(a) is false iff a ∈ I is required not (not permitted) 
to do P ∈ Sα.
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◇d and □d do not obey ◇-over-□

• ◇d□dPa ⇔d ◇dPa (cf. slide 15)
– Ann is permitted to be required to leave ⇔d

Ann is permitted to leave
• □d◇dPa ⊧d ◇dPa

– Ann is required to be permitted to leave ⊧d Ann 
is permitted to leave 

• Hence □d◇dPa ⊧d ◇d□dPa, which is □-over-◇, 
the converse of ◇-over-□.
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Epistemic and quantifier modal 
interactions obey ◇-over-□

• ◇e with ∀
– ◇e∀xPx ⊧q ∀x◇ePx

• it is possible that every candidate will win ⊧q for 
every candidate it is possible that he or she will win

• more pithily: every candidate might win ⊧q any 
candidate might win

• ∃ with □e

– ∃x□ePx ⊧q □e∃x Px
• there is a candidate who it is certain will win ⊧q it is 

certain that a candidate will win
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Deontic and quantifier modal
interactions also obey ◇-over-□

• Case 1: Quantifier binds obligatee or 
permitee.
– ◇d with ∀: ◇d∀xPx ⇔q ∀x◇dPx

• it is permitted for every boy to leave ⊧q for every 
boy it is permitted for him to leave

• or: every boy can leave ⊧q any boy can leave
– ∃ with □d: ∃x□dPx ⇔q □d∃x Px

• there is a boy who is required to leave ⊧q it is 
required for a boy to leave
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Deontic and quantifier modal
interactions also obey ◇-over-□

• Case 2: Quantifier does not bind obligatee 
or permitee.
– ◇d with ∀: ◇d∀xPax ⊧q ∀x◇dPax

• it is permitted for Ann to tutor every girl ⊧q for every 
girl it is permitted for Ann to tutor her

• or: Ann can tutor every girl ⊧q Ann can tutor any girl
– ∃ with □d: ∃x□dPax ⊧q □d∃x Pax
– ∃x□dPax ⊧q □d∃x Pax

• there is a girl who Ann is required to tutor ⊧q it is 
required for Ann to tutor a girl
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Deontic and epistemic modals do 
not obey ◇-over-□

• ◇e□dPa ⊭d □d◇ePa, and conversely 
– it is possible that Ann is obligated to leave ⊭d

Ann is obligated for it to be possible for her to 
leave, and conversely.

• ◇d□ePa ⊭d □e◇dPa, and conversely
– Ann is permitted for it to be certain for her to 

leave ⊭d it is certain that Ann is permitted to 
leave, and conversely.
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Quasimodals

1. Quasimodal essentials
2. Varieties of quasimodals
3. Quasimodal interactions
4. Quasimodal–modal interactions
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Defining properties of quasimodals

⌂ An operator ⌂ (“house”) is a quasimodal if and only 
if the following four conditions are satisfied.
1. ⌂ is intermediate in strength between □ and ◇.

‣ For all p ∈ S: □p ⊨ ⌂p ⊨ ◇p
2. ⌂ distributes over all single-premise implications.

‣ For all p, q ∈ S: if p ⊧ q, then ⌂p ⊧ ⌂q.
3. ⌂ fails to distribute over some multi-premise implications.

‣ For some p, q, r ∈ S: p, q ⊨ r, but ⌂p, ⌂q ⊭ ⌂r.
‣ Note: this condition distinguishes ⌂ from □.

4. ⌂ fails to distribute over some disjunctions.
‣ For some p, q ∈ S: ⌂(p ∨ q) ⊭ ⌂p ∨ ⌂q

‣ Note: this condition follows from the second part of the definition of □, 
thus distinguishing ⌂ from ◇.
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Quasinecessity

• A quasimodal is a quasinecessity (□⌂) 
operator iff for all p ∈ S:

– □⌂p ⊨ ¬□⌂¬p, and not conversely
• From this condition, it follows that 

quasinecessity distributes over the law of 
contradiction. For all p, q ∈ S:

– □⌂p, □⌂¬p ⊨ □⌂q
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Quasipossibility

• Quasipossibility (◇⌂) is the dual of 
quasinecessity. That is, for any 
quasinecessity operator □⌂, its dual ◇⌂ is a 
quasipossibility operator.  For all p ∈ S: 
– ◇⌂p ⇔ ¬□⌂¬p

• Consequently, □⌂ and ◇⌂ are interdefinable 
using negation, just like □ and ◇.
– □⌂p ⇔ ¬◇⌂¬p
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Quasimodals in E⁴¹
• □⌂⁴¹ is defined for E⁴¹ as follows.

1. □⌂⁴¹p = ⊤⁴¹ if p has at most one 0, i.e. if p ∈
{⊤⁴¹, 0111, 1011, 1101, 1110}.

2. □⌂⁴¹p = ⊥⁴¹ otherwise
• ◇⌂⁴¹ is defined for E⁴¹ as follows.

1. ◇⌂⁴¹p = ⊥⁴¹ if p has at most one 1, i.e. if p ∈
{⊥⁴¹, 0001, 0010, 0100, 1000}.

2. ◇⌂⁴¹p = ⊤⁴¹ otherwise
• (See slide 12 for definitions of □⁴¹ and ◇⁴¹.)
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□⌂⁴¹ and ◇⌂⁴¹ satisfy the four 
quasimodal conditions

1. □⌂⁴¹ and ◇⌂⁴¹ are intermediate in strength between □⁴¹ and 
◇⁴¹.

• □⁴¹p ⊨⁴¹ □⌂⁴¹p ⊨⁴¹ ◇⌂⁴¹p ⊨⁴¹ ◇⁴¹p
2. □⌂⁴¹ and ◇⌂⁴¹ distribute over single-premise entailments. 

If p ⊨⁴¹ q, then:
• □⌂⁴¹p ⊨⁴¹ □⌂⁴¹q and ◇⌂⁴¹p ⊨⁴¹ ◇⌂⁴¹q

3. □⌂⁴¹ and ◇⌂⁴¹ fail to distribute over some multi-premise 
entailments.

• 1110, 0111 ⊨⁴¹ 0110; but □⌂⁴¹1110, □⌂⁴¹0111 ⊭⁴¹ □⌂⁴¹0110
• 1100, 0110 ⊨⁴¹ 0100; but ◇⌂⁴¹1100, ◇⌂⁴¹0110 ⊭⁴¹ ◇⌂⁴¹0100

4. □⌂⁴¹ and ◇⌂⁴¹ fail to distribute over some disjunctions.
• □⌂⁴¹(1100 ∨ 0110) ⊭ □⌂⁴¹1100 ∨ □⌂⁴¹0110
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Other properties of □⌂⁴¹ and ◇⌂⁴¹

• □⌂⁴¹ distributes over the law of contradiction. 
For all p, q ∈ S⁴:
– □⌂⁴¹p, □⌂⁴¹¬p ⊨⁴¹ q

• ◇⌂⁴¹ is the dual of □⌂⁴¹.
– ◇⌂⁴¹p ⇔⁴¹ ¬□⌂⁴¹¬p

• ◇⌂⁴¹ does not distribute over the law of 
contradiction. Let p = 0011, q = 0001. Then:
– ◇⌂⁴¹0011, ◇⌂⁴¹1100 ⊭⁴¹ ◇⌂⁴¹0001
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Epistemic quasimodals

• Let Eπe = <Sπ, ⊧e> be the entailment 
structure previously defined for epistemic 
modals.
– Epistemic quasinecessity □⌂e:

• □⌂ep is true iff p ∈ Sπ is likely (should happen).
– Epistemic quasipossibility ◇⌂e:

• ◇⌂ep is true iff p ∈ Sπ is not unlikely.
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□⌂e and ◇⌂e satisfy the four 
quasimodal conditions

1. The epistemic quasimodals are 
intermediate in strength between □e and ◇e.

– □ep ⊧e □⌂ep ⊧e ◇⌂ep ⊧e ◇ep
– certain(p) ⊧e likely(p) ⊧e not-unlikely(p) ⊧e

possible(p)
2. □⌂e and ◇⌂e distribute over single-premise 

entailments. If p ⊨e q, then:
• □⌂ep ⊨e □⌂eq and ◇⌂ep ⊨e ◇⌂eq
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□⌂e and ◇⌂e satisfy the four 
quasimodal conditions

3. □⌂e and ◇⌂e fail to distribute over some multi-premise 
entailments. 

• There are p, q that are likely, but such that their conjunction is not 
likely; and there are r, s that are not unlikely, but such that their 
conjunction is unlikely. That is:

• p, q ⊨e p ∧ q; but □⌂ep, □⌂eq ⊭e □⌂ep ∧ q
• r, s ⊨e r ∧ s; but ◇⌂er, ◇⌂es ⊭e ◇⌂er ∧ s

4. □⌂e and ◇⌂e fail to distribute over some disjunctions.
• There are p, q that are not likely, but such that their disjunction is 

likely; and there are r, s that are unlikely, but such that their 
disjunction is not unlikely. That is:

• □⌂e(p ∨ q) ⊭e □⌂ep ∨ □⌂eq
• ◇⌂e(p ∨ q) ⊭e ◇⌂ep ∨ ◇⌂eq
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Other properties of □⌂e and ◇⌂e

• □⌂e distributes over the law of contradiction, 
since there is no p ∈ Sπ that is both likely and not 
likely. That is, for every p, q ∈ Sπ:
– □⌂ep, □⌂e¬p ⊨e q

• ◇⌂ep is the dual of □⌂ep.
– ◇⌂ep ⇔e ¬□⌂e¬p
– not-unlikely(p) ⇔ ¬[likely(¬p)] = ¬[unlikely(p)]

• ◇⌂e does not distribute over the law of 
contradiction, since there is a p ∈ Sπ such that 
both it and ¬p are not unlikely. For such p:
– ◇⌂ep, ◇⌂e¬p ⊭e ◇⌂e(p ∧ ¬p)
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Quantifier quasimodals
• Let Eiq = <Si, I, ⊧q> be a first-order (extended) 

entailment structure as before, but where I 
contains a sufficiently large number of individuals.
– Quantifier quasinecessity M: 

• MxPx is true iff Pi is true for all but fewer than a large number 
of i ∊ I.

– Quantifier quasipossibility μ:
• μxPx is true iff Pi is true for a large number of i ∈ I.

– I use M and μ to label these operators rather than □⌂q

and ◇⌂q, since I will consider other quantifier 
quasimodals.

– I assume that M is expressible by most and μ by many.
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M and μ satisfy the four 
quasimodal conditions

1. M and μ are intermediate in strength 
between ∀ and ∃. 

• ∀xPx ⊧q MxPx ⊧q μxPx ⊧q ∃xPx
• every dog is smart ⊧q most dogs are smart ⊧q

many dogs are smart ⊧q some dog is smart

2. M and μ distribute over single-premise 
entailments. If Px ⊨q Qx, then:

• MxPx ⊨q MxQx μxPx ⊨q μxQx
• most dogs bark ⊨q most dogs make noise
• many dogs bark ⊨q many dogs make noise
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M and μ satisfy the four 
quasimodal conditions

3. M and μ fail to distribute over some multi-premise 
entailments. There are predicates Px, Qx such that:

• MxPx, MxQx ⊭q Mx(Px ∧ Qx)
• most dogs bark, most dogs bite ⊭q most dogs bark and bite

• μxPx, μxQx ⊭q μx(Px ∧ Qx)
• many dogs bark, many dogs bite ⊭q many dogs bark and bite

4. M and μ fail to distribute over some disjunctions. There 
are predicates Px, Qx such that:

• Mx(Px ∨ Qx) ⊭q MxPx ∨ MxQx
• most dogs bark or bite ⊭q most dogs bark or most dogs bite

• μx(Px ∨ Qx) ⊭q μxPx ∨ μxQx
• many dogs bark or bite ⊭q many dogs bark or many dogs bite
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Other properties of M and μ
• M distributes over the law of contradiction, since 

MxPx and Mx¬Px are contradictory.
– most dogs bark and most dogs do not bark is a 

contradiction.
• μxPx is the dual of MxPx.

– μxPx ⇔q ¬Mx¬Px
• many dogs bark ⇔ it is not the case for most dogs that they do 

not bark
• μ does not distribute over the law of contradiction, 

since μxPx and μx¬Px are not contradictory.
– many dogs bark, many dogs do not bark ⊭q many dogs 

bark and do not bark.
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Other quantifier quasipossibilities

• In addition to μ, the following are all 
quantifier quasipossibilities.
– Numerical: nxPx is true iff there are at least n

(n > 1) individuals such that Pik (1≤ k ≤ n) is 
true.

– Proportional: m/nxPx is true iff for at least 
m/nth (m/n ≤ ½) of the individuals i ∈ I, Pi is 
true. 
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Why n and m/n are quantifier 
quasipossibilities

• n and m/n satisfy the four quasimodal 
conditions.
– I leave the demonstration of this as an 

exercise.
• n and m/n are duals of quasinecessity 

operators.
– See next slide.
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n and m/n are duals of 
quasinecessity operators

• Most of the numerical and proportional quasipossibility 
operators are duals of quasinecessities that are not 
idiomatically expressed in any language I am familiar with. 
However the quasipossibility half of (which expresses ½) 
is the dual of the quasinecessity a majority of. 

• The quasipossibility quantifier n is the dual of the 
quasinecessity “all but fewer than n”, which I represent ∀-n. 
Consequently:
– ∀xPx ⊧q ∀-nxPx ⊧q nxPx ⊧q ∃xPx

• The quasipossibility quantifier m/n is the dual of the 
quasinecessity “all but fewer than m/n”, which I represent 
∀-m/n. Consequently:
– ∀xPx ⊧q ∀-m/nxPx ⊧q m/nxPx ⊧q ∃xPx
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Are there deontic quasimodals?
• Let Eαd = <Sα, ⊧d> be the entailment structure 

previously defined for deontic modals.
– What is the status of deontic operators such as those 

expressed by have a duty to, be advised to, ought to, 
should, etc.? Specifically, are they necessity or 
quasinecessity operators?

– This is an empirical question. The answer depends on 
whether they distribute over multi-premise entailments.

• In my judgment they do, which would render them necessity 
(modal) rather than quasinecessity (quasimodal) operators.

• If this is correct, then epistemic should is a quasinecessity 
operator, but deontic should is a necessity one.
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Interactions of epistemic quasimodals
• Interactions of like epistemic quasimodals (two 

quasinecessity or two quasipossibility operators)
– ◇⌂ep◇⌂ep ⇔e ◇⌂ep □⌂ep□⌂ep ⇔e □⌂ep

• it is likely that it is likely that p ⇔e it is likely that p
• it is not unlikely that it is not unlikely that p ⇔e it is not unlikely that p

• Interactions of unlike epistemic quasimodals (a 
quasinecessity operator with a quasipossibility one)
– ◇⌂ep□⌂ep ⊧e □⌂ep◇⌂ep (instance of ◇⌂-over-□⌂)

• it is not unlikely that it is likely that p ⊧e it is likely that it is not unlikely 
that p.

– If p is neither likely nor unlikely, then the premise is false but the 
conclusion is true; otherwise both premise and conclusion have the 
same truth value. 
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Interactions of like quantifier 
quasimodals

• Let Ξ be a quasinecessity quantifier and Δ
a quasipossibility quantifier.
– ΞxΞyPxy ⊭q ΞyΞxPxy, and conversely
– ΔxΔyPxy ⊭q ΔyΔxPxy, and conversely

• for most boys, they like most girls ⊭q for most girls, 
most boys like them, and conversely

• there are two girls who pushed three boys ⊭q there 
are three boys who two girls pushed, and 
conversely
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Interactions of unlike quantifier 
quasimodals

• Let Ξ and Δ be as on the previous slide.
– ΔxΞyPxy ⊧q ΞyΔ xPxy (instance of ◇⌂-over-□⌂)

• there are three boys that most girls like ⊧q for most 
girls, they like three boys

• there are many boys that all but fewer than three 
girls like ⊧q for all but fewer than three girls, they like 
many boys
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Interactions between epistemic and 
quantifier quasimodals

• Let ⌂e be an epistemic quasimodal, and Π a 
quantifier quasimodal.
– Πx⌂ePx ⊭q ⌂eΠxPx, and conversely

• there are three prisoners who it is (not un)likely will escape ⊭q it 
is (not un)likely that three prisoners will escape, and conversely

• for most prisoners it is (not un)likely that they will escape ⊭q it is 
(not un)likely that most prisoners will escape, and conversely

• This interaction does not appear to be predictable 
simply from the separate interaction patterns of 
epistemic and quantifier quasimodals.
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Epistemic (E) and quantifier (Q) modal–
quasimodal (M/Qm) interactions

• ⌂e behaves like □e in interaction with ◇e, but like 
◇e in interaction with □e. 

1. ◇e⌂ep ⊨e ⌂e◇ep
2. ⌂e□ep ⊨e □e⌂ep

• Π behaves like ∀ in interaction with ∃, but like ∃
in interaction with ∀. 

1. ∃xΠyPxy ⊨q Πy∃xPxy
2. Πx∀yPxy ⊨q ∀yΠxPxy

• These patterns represent a blend of ◇-over-□
with ◇⌂-over-□⌂.
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Examples of E and Q M/Qm
interactions

• E M/Qm interaction examples
– it is possible that it is likely that p ⊨e it is likely that 

it is possible that p
– it is likely that it is certain that p ⊨e it is certain that 

it is likely that p
• Q M/Qm interaction examples

• there is a boy who many girls like ⊨q there are 
many girls who like a boy

– there are many girls who like every boy ⊨q for 
every boy there are many girls who like him or her
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Epistemic–Quantifier (E-Q) M/Qm
interactions

• ⌂e/Π behaves like ∀ in interaction with 
∃/◇e, and like ∃ in interaction with ∀/□e.
1. ◇eΠxPx ⊨q Πx◇ePx
2. ∃x⌂ePx ⊨q ⌂e∃xPx
3. ⌂e∀xPx ⊨q ∀x⌂ePx
4. Πx□ePx ⊨q □eΠxPx

• These patterns also represent a blend of 
◇-over-□ with ◇⌂-over-□⌂.
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Examples of E-Q M/Qm
interactions

‣ it is possible that many prisoners will escape ⊨q there 
are many prisoners who it is possible will escape

‣ it is likely that every prisoner will escape ⊨q for every 
prisoner it is likely that he or she will escape

‣ there is a prisoner who it is likely will escape ⊨q it is 
likely that a prisoner will escape

‣ there are many prisoners who it is certain will escape
⊨q it is certain that many prisoners will escape
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Deontic–Quantifier (D-Q) M/Qm
interactions

• Π behaves like ∀ in interaction with ◇d, but like ∃ in 
interaction with □d.
• ◇dΠxP(a)x ⊧q Πx◇dP(a)x Πx□dP(a)x ⊧q □dΠxP(a)x

• These patterns also represent a blend of ◇-over-□ with 
◇⌂-over-□⌂.

• Examples:
• it is permitted for two girls to leave ⊧q there are two girls who are 

permitted to leave
• it is permitted for most girls to leave ⊧q for most girls, they are 

permitted to leave 
• there are two girls who are required to leave ⊧q it is required for 

(any) two girls to leave
• for most girls, they are required to leave ⊧q it is required for most 

girls to leave
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Deontic–Epistemic (D-E) M/Qm
interactions

• Propositions with a deontic modal and epistemic 
quasimodal do not entail each other (cf. slide 29 
for the same result for D-E modal interactions).
1. ◇d⌂ePa ⊭d ⌂e◇dPa, and conversely
2. ⌂e□dPa ⊭d □d⌂ePa, and conversely

• Examples:
• Ann is permitted to be (not un)likely to leave ⊭d it is 

(not un)likely for Ann to be permitted to leave, and 
conversely

• it is (not un)likely that Ann is required to leave ⊭d

Ann is required for it (not) to be (un)likely for her to 
leave, and conversely
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Summary

1. Summary regarding modals
2. Summary regarding quasimodals
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Summary: Modals
1. Provided a structuralist account of necessity (□) and 

possibility (�) modals.
2. Stated a special modal law (�-over-□) governing the 

strength of scope relations of those operators in certain 
domains.

3. Described the following domains:
a) E(pistemic modals) (obey �-over-□)
b) Q(uantifier modals) (obey �-over-□)
c) D(eontic modals) (do not obey �-over-□)

4. Described interactions of modals within and across 
domains.

a) E-Q interactions obey �-over-□.
b) D-Q interactions obey �-over-□.
c) D-E interactions do not obey �-over-□.
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Summary: Quasimodals
1. Provided a structuralist account of quasimodals 

(⌂), which are weaker than □ and stronger than ◇. 
• Like □ and ◇, ⌂ distributes over single-premise 

entailments
• Unlike □, ⌂ fails to distribute over multi-premise 

entailments. 
• Unlike ◇, ⌂ fails to distribute over disjunctions.

2. Distinguished two types of quasimodals: 
quasinecessities (□⌂) and quasipossibilities (◇⌂).
• If ⌂ distributes over the law of contradiction, it is a □⌂.
• The dual of □⌂ is ◇⌂.
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Summary: Quasimodals

3. Noted the following quasinecessity and 
quasipossibility operators.
Type Quasinecessity Quasipossibility
Epistemic □⌂e: likely �⌂e: not unlikely
Quantifier M: most μ: many

∀-n: all but <n n: n ≥ 2
∀-m/n: all but <m/n m/n: m/n ≤ ½

Deontic (none) (none)
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Summary: Quasimodals

4. Showed that the interactions of quasinecessity 
with quasipossibility operators obey �⌂-over-□⌂, 
except when epistemic and quantifier 
quasimodals interact, a fact for which no 
explanation was offered.

5. Showed that quasimodal-modal interactions 
obey a blend of �-over-□with �⌂-over-□⌂, 
except as predicted, when epistemic 
quasimodals interact with deontic modals.
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