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1. The question of natural language infinity 
 
The assumption that natural languages are comprised of an infinite set of 
expressions is widely held, and viewed as a characteristic that must be 
accounted for by any theory of natural language.1 Pullum & Scholz (2005, 
2009) have recently argued, however, that no adequate demonstration for 
natural language infinity (NLI) has ever been made and that the cardinality 
of the set of all the expressions in a language is not important for the 
formulation of grammars for natural languages (2005: 497). In this 
section, I examine their argument against the claims for NLI and conclude 
that they are correct in asserting that the question of NLI remains open, 
though perhaps not exactly for the reasons they provide. However I do 
not agree with them about the lack of importance of the question of NLI, 
and in the remainder of the paper attempt to show how it might be 
answered. 

Pullum & Scholz (2005: 495) threw down the gauntlet when they 
asserted that “[c]ontrary to popular belief, it has never been shown that 
natural languages have infinitely many expressions”. They contend that 
what they call the Master Argument for language infinity is the basis for 
all the putative demonstrations of NLI, and that it fails because it is either 
unsound or begs the question. They also note that their point is not new, 
but a paraphrase of an argument that Paul Postal and I published some 25 
years ago (Langendoen & Postal 1984: 30–35). Since Paul and I went on 
to make an even stronger claim about how many expressions a natural 
language has, namely that it has transfinitely (i.e. more than denumerably 
infinitely) many, I find myself in the somewhat odd position of having 

                                                 

1 I thank three anonymous reviewers, who convinced me that the original version 
of this paper needed a major overhaul. This material is based in part upon work 
that was supported while I was serving at the National Science Foundation. Any 
opinion and conclusions are those of the author and do not necessarily reflect the 
views of the National Science Foundation. 
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argued that NLI is correct, but also of having helped formulate an argu-
ment that purports to deny that anyone has ever shown that it is correct. 

Pullum & Scholz (2009) elaborate on this point by showing that NLI 
cannot be established any of a variety of arguments for infinite size, such 
as inductive generalization or mathematical induction. Similarly, it cannot 
be established by a reductio ad absurdum of the form (1)–(3): 

 
(1) Assume that natural languages have at most finitely many finitely 

large expressions;  
(2) Show that the assumption together with other known properties of 

natural languages leads to a contradiction, namely that all expressions 
have an upper bound on size, but that there is at least one larger one; 
and  

(3) Conclude that natural languages must have infinitely many 
expressions. 

 
The success of the reductio argument depends on identifying the 

correct known properties. As Pullum & Scholz (2005, 2009) point out, the 
known property that is typically appealed to in arguments for NLI is the 
existence of operations that iteratively increase the size of expressions and 
that in doing so preserve well-formedness. Certainly, as they also point 
out, if a language is closed under one or more of those operations, so that 
they are genuinely recursive, not just iterative, it is infinite. However from 
the fact that one’s grammatical model is closed under such an operation, it 
does not follow that the language it models is. Without a demonstration of 
closure under a particular operation for the language itself, the issue of the 
correctness of NLI remains open. In formulating our argument for NLI, 
Postal and I asserted that English and other natural languages are closed 
under two iterative size-increasing operations; however, whether we were 
successful in demonstrating it is also open to question. I return to that 
issue in Section 3. In the next section, I consider a way of determining 
whether a natural language is infinite and conclude that it is possible for 
some natural languages to be infinite while others aren’t. 
 

2. Determining the size of natural languages 
 
Determining the size of a natural language requires projecting beyond 
what is known about it from the direct evidence we have at hand. Our 
direct evidence comes in the form of judgments about particular expres-
sions: whether they are grammatical in that language, whether they have 
such-and-such conditions of use in that language, etc. For any natural lan-
guage L, let L□ represent the finite set of expressions known to belong to L 
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on the basis of such direct evidence. Given that L□ provides indirect evi-
dence for genuinely recursive size-increasing operations, standard 
generative models project a denumerably (countably) infinite set L◊ of 
‘possible’ members of L. By not distinguishing the models from the 
language, proponents of such models conclude that L = L◊ and so is 
infinite. As noted above, that conclusion may be correct, but an argument 
is still needed to show that the models do not overgenerate. In the absence 
of such an argument, all we can conclude is that L lies somewhere 
between L□ and L◊, and so may be either finite or infinite. The question we 
now face is this:  
 
Q1. How far can we project membership in L beyond L□ with a reasonable 

degree of certainty? 
 

One promising approach is to attempt to identify on the basis of L□ 
those expressions L⌂ that are needed by speakers of L, since it is 
reasonable to assume that L contains every expression that its speakers 
will ever have occasion to need. Taking this approach, we then ask:  
 
Q2. What do people need from the languages they speak?  
 

It is clear that a large finite set of expressions will suffice to satisfy the 
expressive needs of anyone with finite temporal and physical resources, 
i.e. everyone. However it is appropriate to abstract away from those 
resource limitations to ask what people might need if those limitations 
were removed. The simplest and most striking answer to this question was 
given by Sapir (1949 [1924]: 153), who contended that every natural 
language has the property of “formal completeness”, thereby providing “a 
complete system of reference” for human experience, on analogy with 
numerical and geometric systems of reference for quantity and space, so 
that for any of its speakers, “no matter how original or bizarre his idea or 
fancy, the language is prepared to do his work”.2  

                                                 

2 Von Fintel & Matthewson (2008: 142–146) consider Sapir's‘formal complete-
ness’ thesis to be a forerunner of Katz’s (1976) ‘effability’ thesis for natural 
languages — that every language is capable of expressing every meaning. If they 
are right about this, it would not be inappropriate to refer to the effability thesis 
as the ‘Sapir-Katz hypothesis’. However Sapir’s thesis explicitly relates a 
language’s expressive power to speaker’s need in a way that Katz’s does not. On 
the other hand, Katz considers effability the defining characteristic of natural 
languages, whereas Sapir simply considers formal completeness “[t]he 
outstanding fact” about them. 
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Although Sapir’s answer is a simple one, it is not immediately clear 

how to apply it to the problem under consideration, except perhaps by ex-
ploiting his mathematical analogy, which he says “is by no means as fan-
ciful as it appears to be”. Since the analogous systems are all complete in 
the sense that they are closed under the relevant operators, e.g. addition for 
arithmetic, it seems reasonable to construe formal completeness to mean 
that linguistic systems are comparably closed under the relevant oper-
ators.3 If we accept Sapir’s formal completeness hypothesis as just inter-
preted as the basis for identifying membership in L⌂, our question next 
becomes:  
 
Q3. What is the size of the set of expressions that is closed under the 

relevant operators? 
 

Having noted above that closure under iteratively size-increasing oper-
ations results in an infinite set, it would appear that the answer is just that. 
For example, from the occurrence of tautocategorial embedding — Pullum 
& Scholz’s (2005) example of an iterative size-increasing operation that 
preserves well-formedness in English — in members of L□ together with 
the judgment that the operation is needed for L to do the expressive work 
for its speakers, L⌂ is closed under that operation, and is thereby infinite. 
However I also interpret Sapir’s hypothesis as consistent with the view, 
argued for by Everett (2005), that the expressive needs of one linguistic 
community can differ from that of another, since the languages that meet 
those different needs can nevertheless all be formally complete. If for 
example the community speaking language P does not need the ability to 
refer to distant ancestors, whereas the one speaking language Q does, P⌂ 
may still be formally complete in Sapir’s sense, being analogous, say, to 
an arithmetic system over the set of positive integers, with Q⌂ analogous 
to one over the full set of integers. One can even imagine the community 
speaking P to have such limited expressive needs that P⌂, though formally 
complete, is finite, analogous to an arithmetic system over the set of 
positive integers modulo some large, but finite number. 

For example, imagine that speakers of P need no more expressive re-
sources than a (possibly large, but finite) set of k simple affirmative sen-
tences and the operations of negation, conjunction and disjunction defined 
                                                 

3 Starting from the assumption of NLI, Hauser, Chomsky & Fitch (2002: 1571) 
consider natural language to be “directly analogous to the natural numbers” but 
nothing like formal completeness or closure figures in their account of human 
linguistic capacity. 
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over them. Then the smallest language P⌂ that is closed under these oper-
ations is much larger, but still finite, having 2²

k
 members, in which there is 

exactly one expression for each logically distinct member of P⌂. Of course 
P may be larger, allowing for paraphrase, but the method proposed here 
for determining whether P is infinite would not lead to a definite conclu-
sion one way or the other. 
 

3. Can natural languages be bigger than denumerably infinite? 
 
The starting point for Postal’s and my argument for NLI is not much dif-
ferent from the hypothetical example in the previous paragraph. Instead of 
a finite set of simple affirmative sentences as the base of operations for P, 
it proposes an infinite set P0 based on closure over a single iterative 
tautocategorial embedding operation. Granted that this starting point begs 
the question of establishing NLI, we had a different concern, namely to 
show that natural languages are not merely denumerably infinite but 
transfinite in size. The only operation we considered over this base was 
conjunction, and we asserted that P is closed under that operation, by 
which we meant the condition in (4) (an update of the starting point for 
our Closure Principle for Coordinate Compounding), in which the absence 
of a final member of the list of expressions in the antecedent is critical; it 
indicates that there is no finite bound on the number of conjuncts in 
members of P. From (4) it follows that P has nondenumerably many 
expressions. 
 

(4) If p1, p2, ... are in P0, then their conjunction is in P. 
 

Our argument for (4) was based not on consideration of expressive 
need, but rather on economy of description: The simplest empirically ade-
quate grammatical account of conjunction does not limit the number of 
unconjoined expressions that can be conjoined, so (4) is to be preferred to 
any account that does limit it, for example to a finite number of 
conjuncts.4 Moreover, if we think of conjunction in P as logical rather 
than grammatical, then (4) can be recast as a valid entailment schema as in 
(5), where p1, p2, ... is a possibly infinite sequent. 
 

                                                 

4 Conjoined expressions can also be members of a conjunction, but not recur-
sively so (Langendoen 1998), so for convenience they are left out of the for-
mulation in (4)., If the antecedent list in (4) is construed as the members of a set, 
it also does not provide for conjuncts to be repeated. 
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(5) p1, p2, ... |= p1&p2... 

 
However despite its elegance, our argument has not convinced many 

linguists of its correctness, even among those who uncritically accept 
NLI.5 There are, I believe, two reasons for this. One is the entrenched 
dogma, as Pullum & Scholz (2005) put it, that every expression in a 
natural language is a finitely-sized object; see also Dale (1996) and 
Hintzen & Uriagereka (2006). The other is that no convincing need has 
been identified for infinitely-sized expressions. Pullum & Scholz (2005: 
497) make the best case that I am aware of for the usefulness of infinitely-
sized expressions, namely for characterizing the notion of mutual belief, 
citing the work of Schiffer (1972) and Joshi (1982).6

Postal and I did not stop at (4) in our formulation of the principle of 
closure under conjunction, but went on to propose that for every 
nonempty, nonsingleton set of expressions of a natural language, it 
contains a conjunctive expression having every member of that set as a 
conjunct, from which it follows that natural languages are proper classes, 
making them too large to be considered sets. However in the absence of a 
need for expressions of a size greater than that of the denumerably-
infinitely-long conjunctions characterized by (4), I conclude that they are 
not part of L⌂ for any natural language L.7

 
 

4. Conclusion 
 
Determining the size of a natural language is not as easy as simply declar-
ing that there is no longest expression in any language and saying as a 

                                                 

5 Though it has found some resonance in computer science; see for example 
Zeitman (1993). 
6 Uriagereka (2005) considers, but does not formalize, the possibility that the 
attachment of disjuncts, the class of adjuncts that do not scope over one another, 
gives rise to infinitely-sized expressions, and perhaps more interestingly, to 
infinitely large forms of interpretation expressible with finite phonologies. Even 
if all that is correct, it still remains to be seen whether a need for them can be 
identified. 
7 Pullum & Scholz (2005: 498, n. 15) give as a reason for not characterizing natural 
languages as proper classes the fact that the closure principle that leads to that result is 
unstatable as a Model-Theoretic Syntax constraint. If I read them correctly, the 
weaker closure principle in (4) is also unstatable, but there is another way in that 
framework for admitting denumerably infinitely-sized expressions.  
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result “Clearly it’s denumerably infinite”, and we may be grateful to 
Pullum & Scholz (2005, 2009) for pointing that out. The greatest difficulty 
is in finding and agreeing upon a basis for determining whether a language 
is closed under one or more of its iterative size-increasing operations, and 
if so how. If the basis for doing so is whether the results of the operations 
are needed by the community of speakers of that language, as I have 
suggested, following Sapir, there is still room for dispute about which 
operations should be counted, and about what conclusion to draw if it 
should turn out that there are no such operations in a particular language. 
The question of whether the sets of expressions of particular natural 
languages are finite, denumerably infinite or nondenumerably infinite (of 
the cardinality of the real numbers) remains open. 

Furthermore, given that the question of the size of natural languages 
remains a matter of dispute, we need to look more deeply at the relation 
between natural languages and mathematical systems than simply the 
parallel between the enumeration of their members (expressions on the 
one hand and integers on the other, for example), as Sapir did when he 
developed the notion that natural languages are formally complete. 
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