AN ENVIRONMENT FOR
SUPPORTING EXPERIMENTAL
COMPUTATIONAL LINGUISTICS
RESEARCH

August 14, 1992

D. Terence Langendoen, Principal Investigator

Department of Linguistics
The University of Arizona
Tucson, AZ 85721

E-mail; langendi@arizona.edu

ATRP-0011-91 Final Report

ATRP-0011-91 FINAL REFORT

Abstract

This report describes Twincle, The Windowing Computational Linguistics Environment, a set of compu-
tational tools for developing models of grammars for natural languages, using graphical and windowing
interfaces. The overall environment consists of a set of more specific environments for specifying the
general structure of lexical items, the structure of specific lexical items, the grammatical rules for com-
bining lexical items into phrases and larger linguistic constructs, and for applying the Jexical and rule
specifications to the analysis of examples. In addition, this report describes the current state of the re-
commendations being developed by the Principal Investigator for the representation of the linguistic
analysis of machine-readable text using SGML., as part of the effort of the Text Encoding Initiative, The
grammatical formalisms being used in the Twincle project are a subset of the latier formalisms, and the
project will be continued in such a way that the output of the Twincle parser will conform to the final
recommendations of the Text Encoding Initiative regarding the representation of the linguistic analyses
of text.

Abstract it

ATRP-0011-91 FINAL REPORT

Table of Contents

TWINCLE: The WINdowing Computational Linguistics Environmentccceveveres 1

T R R 1
Choice of Programming Languagecoeeeernone s 2
Programming Language AIGINAIVESvvvvvt o rinrn e 2
Selected Features of Icon and Idol .. oo v v it e 2
Lessons learned about Icon and Idol in Twinclevvvvvnenevnen e nneen 3
The Computational ERVIFOIMENE . .o v v s ennencc st 4
The Maif) MEII .+ v oo vovne e csnaan s s e s e sasas st ess s 4
The Lexical Attribute EOVIFONMENT . . .o vvereaerenanrarorser oo s 4
The Lexical Class EAVITORMENL . o« vvvvvr v vnnnrencuarren s onroneaisenns s 5
The Lexical Entry BOVIFORMENE . .. ovvvvrnnnneeaor s nr s ssaor s 5
The Rule Development ERVIIONMENE .. .t v vuvrvrneruean s 6
TRHE PATSET + o oo v e ees e en e ms et s 7

A SAmple GIAMMAL . ..o vve v e e iee st 7
Lexical atiributes and vallIBS . ..o v vt vt ie i 7
LexiCal CHASSES .+ v v v v e v e e te e na e n b e e 7
LexiCAL FIBITIS + v v o v v v e ov e tmeme e n s a e a s e a et 7
Grammatical CIASSES .. v v v v r s i er e i 8

R T T I I I 8
Encoding the Grammatical Structure of TERIS .. .oovvvvieniunrnn e 9
Elementary Feature Structures: Features with Binary Vallesvvvevne i 9
Symbolic, Numerical and String Valuesoovvhivurrrrvornrrrne e 10
SECTTEd VAIEES .+ o v v v oee s e e 16
Grouping VAIUES . .. v vt vvvncoun e 11
Values as Atoms, Sets and LiSIS ... oo v v in it 13
Boolean, Default and Uncertainty Values ... ovvrrverrirnirarn e 15
FEAtIe GIOUPS « o« v v o nva s s nnn e s s st 17
The REL AFDUIE o v v vt et ee i vnsinerorsacanroenasesasssaasscasecuvrs 19
BCHOBS + oo e e eee st ecaonoem s a et 22
Ambiguity RESOIIHON . ..o voutr et et 23

REFEIEIICES o v e v o v vsnmentvasnentssstsssostonssnsssaosnsissrssstssnrnsraes 26

.
FISUFES o0 cvvunnnnanoossssosssansssssostssaasassrsesnsnns hrenreneraenes 27

Table of Contents iti

ATRP-0011-91 FINAL REPORT

TWINCLE: The WINdowing Computational
Linguistics Environment

Introduction

The Twincle project is an effort to develop a friendly computational environment for linguists to write
and test grammars for natural languages, by enabling them to specify the components of those grammats
using windowing tools and high-resolution graphics.! It has long been recognized that the main hindrance
to the development of grammatical models for natural languages of any reasonable degree of complexity
and detail is the inability of lingnists and programmers 10 understand the complex interrelationships among
the various parts of the model. Providing graphical representations of those interrelationships, and the
ability to specify grammatical models in terms of those representations will, we believe, enable linguists,
even with little or no help from programmers, to build complex grammatical models to their own spec-
ifications.

In this phase of the Twincle project, we decided to design an environment that would support the devel-
opment of augmented phrase-structure grammars (attribute grammars or feature-structure
grammars) [Alle87], becanse this formalism is widely used in computational linguistics, is general encugh
to provide models for nearly every currently popular grammatical theory, and is relatively easy to visu-
alize. Such grammars generally provide a set of terminal elements, which for our purposes we can
identify with lexical entries, each consisting of a label (typically a string representing the conventional
appearance of the eniry in text), a lexical class and a set of atiributes and vatues. They also generally
provide a set of nonterminal elements consisting of a grammatical class and a set of attributes and values,
and a set of productions or rules. for combining terminal and nonterminal elements together into repres-
entations (often, but not necessarily representable as trees, but always as sets of directed, connected
graphs) of linguistic structures of potentially arbitrary length and complexity.

An additional motivation for selecting the formalism of augmented phrase-structure grammars is that a
formalism very much like it has been selected by the Text Encoding Initiative (TEI) [Sper90] as the basis
for the development of an encoding standard for the interchange of linguistic and other types of analyses
of machine-readable text. The actual encoding is to be done using SGML [Gold90], with class and at-
wibute information specified by SGML tags and attributes. It is a relatively straightforward matier o
convert the representations of the parses of textual matier that the Twincle system provides into SGML
notation of the appropriate sort. The SGML. encoding standard for linguistic representations is being de-
veloped jointly by Simons [Simo92] and the Principal Investigator. The relevant aspect of the standard
being developed for the representation of textual analysis appears below in “Encoding the Grammatical
Structure of Texts” on page 9. We have not yet attempted o provide for the mapping between Twincle
representations and the required SGML representations because the latter have not yet been finally settled

| This work was carried out at The University of Arizona by the Principal Investigator, with support from the Ad-
vanced Telecommunications Research Program of the Depariment of Electrical and Computing Engineering. He
was assisted by Clinton L. Jeffery, a graduate student in the Department of Computer Science, who served as a
consultant; and three part-time Research Assistants: Jon Lipp, an undergraduate student in the Department of
Computer Science; Young-Gie Min, a graduate student in the Department of Linguistics; and Srikanth Raghavan,
a graduate student in the Department of Computer Science. The project will continue in the Fall 1992 semester,
with support from the Cognitive Science Program, which will enable Jon Lipp to continue to work with the Prin-
cipal Investigator as a part-time Research Assistant. A report on the project will also be presented at the ICEBOLS
Conference, South Dakota State University, Madison, SD in October 1992,

TWINCLE: The WINdowing Computational Linguistics Environment 1

ATRP-0011-91 FINAL REPORT

upon by the TEI community (the final decision may not be made for another six months to a year yet),
and because those represeniations are more complex than we have been able to provide for yet within
Twincle (they represent a goal to strive for in the next phase of this work).

Choice of Programming Language

Programming Language Alternatives

Certain very-high-level languages such as PROLOG and LISP are traditionally advocated for work in
natural language processing and computational linguistics; such languages are characterized by their list
processing capabilities, automatic memory management, and built-in data structures. These features make
them appropriate for exploratory programming and rapid prototyping. Other Janguages, such as C, Ct+,
Smalltalk, Actor, and Visual BASIC are more appropriate for writing programs with exiensive graphical
user interface components such as Twincle. This project had strong requirements in both application
domains. It also had strong constraints: our limited financial resources forced us to consider only alter-
natives that would run with acceptable interactive speed on an Intel 486 processor and we had a very
limited budget for software.

Neither PROLOG nor LISP was selected because we were aware of no implementation available that
would meet our performance, budget, and user-interface requirements. It is possible that such a sysiem
exists, but most high-performance implementations of these languages are expensive and run only on
worksiation hardware.

The Intel platform does offer several affordable languages with which to write user interface software.
C and C++ were rejected because they did not offer a high-enough level of interface to support exploratory
programming. Actor and Visual BASIC suffer from various limitations and are not portable across win-
dow and operating systems. Among commercially available languages SmallTalk comes the closest 10
meeting our constraints. But although SmallTalk is highly suitable for rapid prototyping in the hands of
expert SmallTalk programmers, it has a fairly steep learning curve and implementations of SmaliTalk on
Intel systems are neither inexpensive nor exceptionally fast.

The Icon programming language has extensive string and list processing capabilities that make it a natural
choice for text-oriented applications [Gris90]. With the release of Version 8.6, Icon includes a high-level
interface to the X Window System [Jeff92]. Both local expertise with Icon and its public domain status
encouraged its selection for use in Twincle.

Selected Features of Icon and Idol

Several features of Icon make it particularly appropriate to the domain of computational linguistics. These
features include:

« Sophisticated string scanning makes it easier to do more sophisticated lexical and morphological
analyses not possible with stock tools based on regular expressions.

« Direct support for a character-set data type as well as support for more general heterogeneous data
structures with polymorphic operations.

+ Sophisticated control structures that support goal-directed evaluation and control backtracking sim-
plify the implementation of many algorithms.

Tn addition to these features, the object-oriented extension to Icon called Idol has features we considered
important in a larger-scale effort [Jeff90]

. Classes allow extension of Icon's buili-in repertoire of data types in a way that minimizes functionai
dependencies between different code modules.

TWENCLE: The WINdowing Computational Linguistics Environment 2

ATRP-0011-91 FINAL REPORT

. Tpheritance allows new types to be specified in terms of existing types, encouraging code re-use. In
the computational linguistics domain many components such as lexical items fall into natural hier-
archies stich as hyponymy that can be expressed directly with classes and inheritance.

« Tdol also extends Icon with some basic non object-oriented features that are extremely useful in larger
programs that are written in several files, such as constant declarations and source file inclusion.

Taken together, Icon's symbolic processing capabilities, X-Icon's user interface support, and Idof's
object-oriented model make this environment very appropriate for computational linguistics applications.

Lessons learned about Icon and Idol in Twincle

Over the course of the project two valuable lessons were learned about Twincle's implementation lan-
guage, Icon, and the object-oriented extension we used, Idol. The first and most significant result is that
Icon's built-in operations need to be more polymorphic.

'Polymorphism ig the ability to use one notation or set'of operations on more than one type of data. Icon
has a large number of polymorphic operations, and while these are useful we found that many operations
are not as polymorphic as they could be.

For example, during the course of the implementation, we encountered a need to mix records and tables
in our parse trees: records are compact and are used 1o efficiently represent lexical items, while tables are
more flexible since arbitrary keys can be inserted into them. Tcon's list, table, and record types are all
heterogeneous, that is, structure elements may be any type and in particular such structures could contain
some elements that are tables and some that are records.

In addition to this minimal requirement that Icon meets well, mixing records and tables requires that the
parse engine be able to process nodes polymorphically; it applies the same operations irrespective of
whether a given node is represented by a record or a table. In either case, linguistic features of the node
are accessed by string name during parsing. The Twincle parse engine processes nodes irrespective of
whether they are leafs represented as records or internal nodes represented as tables. But record fields
are accessed using the . operator and tables are subscripted using the [] operator.

‘What was needed in this application was a way [0 access records by field name using a string instead of
the . operator — a subscript operation analogous to table subscripting. The following Icon procedure
implements element access by string name independent of whether its first argument is a table or a record.

procedure access (X, s)

if type(x) == "table" then return x[s}]
else x is a record
every i = 1 to *x do {
im = image (x[i])}
if im{*im — *s = 1:0} == "."[]s then return x
}
end

The problem with this procedure is that it is a slow way of doing a natural thing. The use of the image(}
function to obtain the records' ficld names is clumsy. A better solution is to make Icon's subscript more
polymorphic to suppost record field access by string name. Our familiarity with the Icon implementation
allowed us to make this tiny addition. By submitting it back to the Icon Project, the exiension was made
available to the rest of the Icon community as pari of Version 8.7. It is likely that increasing the
polymorphic behavior of other operations would result in similar improvements in the expressive power
of Icon.

Making additions o a language is not something to be taken lightly however. Icon's subscript operator
was already defined for records when the supplied index was an integer, e.g. 112} refers to the second field
of the record independent of its field name. Since Icon automatically converts strings to integers when
necessary, the extension had to make sure it didt not conflict with existing semantics: it can not blindly
assume that a record subscripted by a string is a field name, but must first check to see if the string can
be converted to an integer and applied as an integer index.

TWINCLE: The WENdowing Computational Linguistics Environment 3

ATRP-0011-91 FINAL REPORT

The second major thing we learned about the implementation language used was regarding the object-
oriented preprocessor Idol. Idol object instances are very similar to records--they consist of named fields
that may normally be accessed only by operations defined in the instance's clags. In order 1o access an
object's fields the object must support field-access methods.

We wished to use objects for the primary lexical structures jn our system in order to take advantage of
the inheritance mechanism. But lexical elements have an hicrarchical feature structure that may be several
levels deep. This sort of structure is very naturaily expressed using records. Implementing such a structure
using objects would entail that many field-access procedures be written, and the end resuit would be
slower than record field accesses.

Since Idol objects are implemented using Icon records, it was a simple matter to lift the field-access re-
striction and allow object fields to be accessed by normal lcon record field access. This change to Idol
compromises its strict object-oriented nature in favor of increased utility. It does not reduce Idol's ex-
pressive power or object-oriented functionality, but it reduces objects to more of an organizational tool
for Icon programs instead of an all-encompassing execution paradigm.

The Computational Environment

We have completed working prototypes of four environments for the development of atiribute grammars.
These environments may be used for specifying the following parts of grammars.

» Lexical attributes
« Lexical classes
» Lexical entries
+ Syntactic rules

In addition, we have completed two parsing engines for analyzing input text. One of these uses attribute
gramimars that are developed with the aid of the environments. It is a modification of a standard chart
parser [Kay86]. The other uses principles of Head-Driven Phrase-Structure Grammar (HPSG) and lexical
items that conform to those principles [Poil87]; the algorithm was developed by Min based on chart-
parsing techniques. Since the environment for specifying those lexical items has not yet been fulty im-
plemented, we do not report on this parser here.

The Main Menu

When the Twincle program is invoked, a menu appears which allows the user to select an environment
to use. Our working prototype displays the menu shown in Figure 1.

Insert Figure 1 about here.

After completing work in any environment, one is returned to the main menu, from which one may also
exit the program,

The Lexical Attribute Environment

The lexical attribute environment is the place where one specifies attributes and values for lexical items
without regard to their classes. In specifying attributes for lexical classes and for structured atiributes (see
below), one may restrict their possible values. The updating of possible values for lexical attributes is
always carried out in this environment, so that those values are always a superset of the values that those

attributes may have in any other eavironment (¢.g., within a particular lexical class or within 2 structared
attribute).

The menu for the lexical attribute environment currently appears as in Figure 2,

TWINCLE: The WiNdowing Computational Linguistics Environment 4

ATRP-0011-91 FINAL REPORT

Insert Figure 2 about here.

Choosing the option to add a lexical attribute, one is prompted for the name of the attribute. After one
types in the name and presses RETURN, one is prompted for its possible values. For example, if one
wishes 1o define an attribute TAKECOMP with the possibie vatues frue and false, one enters those names
at the appropriate points on the screen, and exits the area where values are specified. One is then
prompted for another attribute to define. An example illustrating the specification of the TAKECOMP
attribute is given in Figure 3.

Insert Figure 3 about here.

One of the options that is available for specifying the values of an atiribute is to declare the value as a
structare. Selecting this option opens a window in which all of the currently defined attribute names
appear, and one simply clicks on the attributes one wishes to specify as contained within this particular
structure atribute. At the moment, alt of the possible values that are associated with those attributes are

declared as possible values for those attributes within a structure attribute. Later, we will enable the user ..
to edit the lists of possible amributes o restrict their values in this environment, For example, if one *

wishes fo define the atiribute SUBJ as a structure attribute which takes as its value a structure which
containg the attribute NUM and its associated values, one simply clicks on the structure option, and then
clicks on the NUM attribute in the window that opens up. If one wishes to specify that the structure at-
sribute contains an attribute that is not yet defined, one clicks on the define new attribute option, which
returns one to the beginning of the lexical auribute environment for identifying attributes and their possible
values. When one has finished specifying this new attribute, one is returned to the structure attribute value
environment, which now displays this new attribute. One has a choice now of either accepting or rejecting
this attribute as part of the structure attribute one is defining. Upon completing the specification of the
structure atiribute, one is retured to the beginning of the lexical attribute environment. An illustration
showing the definition of the structure atiribute SUBJ is given in Figure 4.

Insert Figure 4 about here.

The Lexical Class Environment

The lexical class environment is where one specifies lexical classes and their associated attributes. Its
meny is shown in Figure 5.

Insert Figure 5 about here.

If one selects the add a new lexical class option, one is first prompted for the name of the lexical class.
After one types it in and presses RETURN, the list of lexical attributes is displayed (as is done also when
specifying the values of structure attributes, as described in “The Lexical Attribute Environment” on page
4), One then selects the attributes one wishes to associate with this particular class by clicking on them.
Again, if one wishes to define a new attribute, one has the option of doing so, exiting to the lexical at-
sribute environment, and then returning to the lexical class environment in which the new attribute now
appears as an option. An illusiration showing the specification of the lexical class V for the attributes
TAKEOBJ and SUBJ is given in Figure 6.

Insert Figure 6 about here.

The Lexical Entry Environment

The lexical entry environment permits one to specify lexical entries as belonging to particular lexical
classes with particular lexical attributes and values. The menu for this environment is given in Figure 7.

Insert Figure 7 about here.

If one selects the make @ new lexical enfry item, one is prompted for a label for the lexical entry (2.8.
its spelling in a standard orthography). Once one types it in, one is prompted for a lexical class; all the

TWINCLE: The WINdowing Computational Linguistics Environment 5

ATRP-0011-91 FINAL REPORT

previously defined lexical classes are displayed, and one clicks on the desired class. To the right, a
window opens that presents the attributes that are defined for this class, and to the right of the attributes
in a pop-down window are the values that are defined for that attribute. One then selects the values, if
any, one wishes to associate with that particular lexical entry. In Figures 8 and 9, are given the windows
used for specifying thai the entry dog is a member of the lexical class N with the attribute and value
specification NUM: sing and that the entry sleep is a member of the lexical class V with the attribute and
value specifications TAKEOBJ: false, TAKECOMP: false and SUBJ: INUM: piural] To define a
second set of specifications for a particular label, one must consider it a new entry.

Insert Figures 8 and 9 about here.

At the moment, we enable users to define more than one lexical entry with the same or similar attribute
and value structures by editing specific entries and changing the values of the labels or of selected attri-
butes and values. We intend to make further enhancements 10 the lexical entry environment to enable
users to describe related lexical entries in terms of their family resemblances.

One major problem in updating grammars is to redefine entries based on changes made elsewhere in the
system. At the moment, we have made no provision for changing lexical entries after other changes have
been made to the lexical attribute and lexical class specifications. However, we are aware of the problem
and will provide straightforward mechanisms for making such updates.

The Rule Development Environment

Given a set of lexical entries, it is possible to specify rules for combining them into larger expressions
and for combining these resulis further, until the largest linguistically definable entities are created.
Twincle provides a rule development environment, whose menu is shown in Figure 10, for defining such
rules.

Insert Figure 10 about here.

The make a rule environment enables users to specify phrase-structure rules which must satisfy certain
tests for particular attribute values and for relations among them, and which carry out certain actions,
primarily the assignment of atiribute values 10 the parent. When making a rule, one first specifies the arity
of the rule: i.e., how many children it has. Next, one is prompted for the label of each of the children,
starting with the left child, by means of a pop-down window that lists the available labels (initially, just
the lexical labels). After the labels of the children have been identified, the atribute structures associated
with each child are displayed, and one is asked to indicate what tests, if any one wishes the rule to satisfy.
In Figure 11, we give an example of the display for the specification of the rule VP ~> VS

Insert Figure 11 about here.

A test by value is one in which the values of particular attributes must be satisfied; i.e., they must not
conflict with certain designated values. To specify such a test, one clicks on the attribute one is interested
in, wherenpon its possible values are displayed. One then clicks on the value that one wishes to designate.
For example, in the rule VP — V §, one may require that the TAKECOMP attribute of V not conflict
with the value true, One specifies this by clicking first on the TAKECOMP aitribute of the child Jabeled
V, and then on the true value of that attribute.

A test by equality is one in which the values of two attributes do not conflict with each other (i.e., those
attributes do not differ in specific values). For example, in the rule NP — Det N, one may require that
the NUM attributes of the two children not differ in value (i.e., that it not be the case that one is specified
as sing and the other as piural).

Upon completion of the test specifications, one is then prompted to specify which child if any the parent
inherits attributes from; we refer to such a child as the head of the construction. In addition, one is asked
whether the parent should be specified for additional atiributes, and whether the parent should have atiri-
butes whose values are pointers to the non-head children. Once all of these specifications are made, and
one is satisfied with the rule, it is added to the grammar, and the parent class and its associated attributes
and values are added to the list of classes that are available for the specification of additional rules.

TWINCLE: The WINdowing Computational Linguistics Environment 6

ATRP-0011-91 FINAL REPORT

The Parser

A chart parser has been written which analyzes input strings in accordance with any grammar that has
been designed using Twincle, The menu for the parser is shown in Figure 12,

Insert Figure 12 about here.

If one selects the Parse data option, then one is prompted first to enter the name of a grammatical class,
and then to enter a siring, which the parser will attempt 10 determine is analyzable as an instance of that
class. If it succeeds, then it displays the attribute structure of the class, and of each of its constituents,
as shown in Figure 13 for the string the dog believes the cat sleeps. I the string has more than one parse,
then each of the parses is displayed in sequence. :

Insert Figure 13 about here.

~A Sample Grammar

Here is a sample small grammar that has been developed using the environment. The grammar is designed
to handle number agreement between determiners and nouns within noun phrases, and between subject
noun phrases and verbs within sentences. It distinguishes between grammatical forms such as this dog,
these dogs, the dog sleeps and the dogs sleep on the one hand, and ungrammatical forms such as *this
dogs, *these dog, *the dog sleep and *the dogs sleeps on the other, It handles the grammaticality of both
this deer and these deer and of both the deer sleeps and the deer sleep by underspecifying the grammatical
number of the noun deer and the determiner the. The grammar also handles a limited amount of recursion,
of the sort exemplified by sentences such as the dog believes the cat sleeps and the dog believes the cais
believe the geese attack the deer.

Lexical attributes and values

Attribute Values

NUM sing, plural
TAKEOBJ true, false
TAKECOMP true, false

SUBJ NUM: sing, plural

Lexical Classes

Class Aftributes

Det NUM

N NUM

v TAKEOBI TAKECOMP SUBJ

Lexical Items

Label dog, cat, goose
Class N

NUM sing

Label dogs, cats, geese
Class N

NUM plural

Label deer

Class N

Label. this

Class Det

NUM Sing

TWINCLE: The WiNdowing Computational Linguistics Environment 7

ATRP-0011-91 FINAL REPORT

Label these

Class Det

NUM plural

Label the

Class Det

Label sleep

Class v

SUBJ INUM: plural}
TAKEOBJ false
TAKECOMP false

Label sleeps

Class A%

SUBJ [NUM: sing]
TAKEOBJ false
TAKECOMP false

Label chase

Class v

SuUBJ [NUM: pluoral]
TAKEOBJ] true
TAKECOMP false

Label chases

Class v

SUBJ [NUM: sing]
TAKEOB) frue
TAKECOMP false

Label attack

Class v

SUBJ INUM: plura]
TARKECOMP false

Label attacks

Class Vv

SUBJ [NUM: sing]
TAKECOMP false

Label believe

Class A"

SUBJ [NUM: plaral]
Label believes
Class v

SUBJ [NUM: singl

Grammatical Classes

Class Atiributes
NP SPEC (pointer to Det) and attributes inherited from N.
VP OBJ (pointer to NP), COMP (pointer to S) and attributes inherited from V.
S Attributes inherited from VP.
Rules
1) S->NPVP
Tests NP and the SUBJ attribute of VP do not conflict.

TWINCLE: The WINdowing Computational Linguistics Environment

ATRP-0011.91 FINAL REPORT

Actions S inherits from VP its SUBJ atiribute is the result of unifying the attri-
butes and values of NP and of SUBJ attribute of VP.

2y NP -»DetN

Tests NUM attributes of Det and N do not conflict.

Actions NP inherits from N; its NUM attribute is resuit of unifying the NUM at-
wribute and value of Det and N. NP has SPEC attribute whose value is the
attribute-vaiue strocture of Detrue.

D VP> VNP

Tests TAKEORI] attribute of V does not conflict with true.
Actions VP inherits from V. VP has OBJ atiribute whose value is the attribute-
value structure of NP.
4 VP—VS
Tests TAKECOMP attribute of V does not conflict with true.
Actions VP inherits from V. VP has COMP atiribute whose value is the
attribute-value structure of S.
5 VP>V
Tests TAKEOBJ, TAKECOMP attributes of V do not conflict with false.
Actions VP inherits from V.

Encoding the Grammatical Structure of Texts

As mentioned above in “Introduction” on page 1, the Twincle system will be extended so that the output
of its parser, and also its representations of grammatical specifications, will be encoded in accordance
with the guidelines under development by the Text Encoding Initiative for the representation of linguistic
analysis. In what follows we present the cursent staie of the guidelines as they have been prepared by the
Principal Investigator with an eye toward their incorporation into the output of the Twincle sysiem.

The Twincle construct of a structure value corresponds to the notion of a feature structure, which is a
general purpose data structure for representing many different kinds of information; it is a highly artic-
ulated system for encoding complexes of featare-value pairs. Feature structures have their origin in the
work of [Knut68], who used the term rode for feature structure and the term field for feature. More recent
treatments can be found in [Shie86] and [Pere87].

Elementary Feature Structures: Features with Binary Values

The fundamental elements of a feature structure system are <f> {for feature) and <fs> (for feature
structure). The simplest <fs> elements consist of one or more <f> elements. An <f> element, in turn,
contains a single value; for example, the binary values represented by the empty tags <plus> and <i-
nus:>,

An <fs> element containing <f> elements with binary values can be straightforwardly used to encode the
matrices of feature-value specifications for phonetic segments, such as the following for the English
segment [s]; cf. [Chom68], p. 415.

{segment +, consonantal +, vocalic -, nasal -, low =, high -, back -,
round -, anterior +, corenal +, continuant +, delayed release +,
strident +]

Here is a possible encoding. Note that <fs> elements may have a type= attribute which indicates what
kind of feature structure it is.

TWINCLE: The WINdowing Computational Linguistics Environment 9

ATRP-0011-91 FINAL REPORT

<fs type='phonetic segment'>

<f name=segment><plus> <f name=congonantal><plilus>

<f name=vocalic><minus> <f name=nasal><minus>

<f name=lowr<minus> <f name=high><minus>

<f name~back><minus> <f name=round><minus>

<f name=anterior><plus> <f name=coronal><plus>

<f name~continuant><plus> <f name=delayedRelease><plus>
<f name=strident><plus>

</Es>

Symbolic, Numerical and String Values

By separating out feature values as content of <f> elements, we are able to classify those values into
fypes. In section “Elementary Feature Structures: Features with Binary Values” on page 9, the two empty
elements which represent binary values are defined. In this section, we define three more feature-value
elements; the empty element <sym> for expressing symbolic values, the empty element <nbr> for ex-
pressing numerical values, and the element <str> for expressing string values. Unlike <sym> and
<nbr>, <str> is not an empty tag.

Symbolic values are values drawn from a closed List of possible string values; these values are represented
by the value of the value= attribute of the <sym> clement, as in <sym value=singular>. Similarly, nu-
merical values are represented by the value of the value= attribute of the <nbr> element, as in <nbr
value=10>. The <nbr> element also may have a type= attribute specifying whether the value is 10 be
construed as an integer or real number value. String values are values from an open list of possible strings,
and are represented by a <str> element, whose content i¢ the actual value as in <str>Hello,
world!</str>. An example of a feature structure which contains features with symbolic, numerical and
string values is the following represeniation of the structure of the English word geese,

<fs type='word structure’>
<f name=lemmar<str>goose</str>
<f pame=categoryr<sym value-noun>
<f pame=barlLevel><nbr type=int value=0>
<f pame=pumber><sym value=plural>
</fs>

Structured Values

Features may have structured values as well; these values are represented by either the <fs> element, or
the fsVal= attribute on the <f> element, which is a pointer to an <fs> element. Since an <fs> or a pointer
to an <fs> is permitted to occur as a value of an <f>, infinite recursion is possible; i.e., an <fs> may
contain an <f> which may contain or point to an <fs>, which may contain an <f>, etc, First we give an
example of an <fs>, which contains six <f> tags which have <fs> tags as their valnes. The structure
exhibits three degrees of recursion.

TWINCLE: The WINdowing Computational Linguistics Environment 10

ATRP-0011-91 FINAL REPORT

<fs id=sinksv type='word structure'>
<f name=form>
<fs id=sinksvf type='formal structure'>
<f name=spelling><str>sinks</str>
<f name=lemma><str>sink</str>
<f name=affix>
<fs id=sps type='affix structure'>
<f name=position><sym value=suffix>
<f name=spelling><str>s</str>
</Es>
</fs>
<f name=jinterpretation>
<fs ide=cvaltnmip3ns type='interpretive structure'>
<f name=stem>
<fs id=cval type='stem structure'>
<f name=category><sym value=verb>
<f pame=auxiliary><minus>
</fs>
<f name=inflection>
<fs id=tnmip3ns type='inflection structure'>
<f pame=tense><sym value=nonpast>
<f pame=mood><sym value=indicative>
<f name=agreement>
<fs id=p3ns type='agreement structure'>
<f name=person><sym value=third>
<f name=number><sym value=singular>
</fs>
</fs>
</fs>
</Es>

Next we provide an encoding of the same structure using the fsVal= attribute, on the assumption that the
clements <fs id=sinksvf type='word structure'> and <fs id=cvaOtnmip3ns type="interpretive struc-
tare'> occur in the document being encoded.

<fs id=sinksv type='word structure'>
<f name=form fsVal=sinksv>
<f name=interpretation fsValm=cvalOtnmip3dns>
</fs>

The <fs id=sinksvf type='formal structure’> clement can be similarly encoded as follows, also assuming
that the «fs id=sps type="affix structure'> element also properly occurs in the document being encoded.

<fs ide=sinksvf type='formal structure'>
<f name—spelling><str>sinks</stz>
<f name=lemma><str>sink</str>
<f name=affix fsVal=sps>
</fs>

Note that when a tag such as <f name=affix fsVal=sps> is used, no content is provided for it. If valid
nonempty content is provided, application programs should ignore the fsVal= attribute.

Grouping Values

Next we introduce the <valGrp> clement for representing grouping values, which are values that combine
any number of other values into one. One use for the <valGrp> tag is 10 represent an ambiguous value,

for example the value of the <f name=case> feature associated with the classical Greek word pdleis,
which is the nominative or accusative plural form of pdlis, ‘city’, as follows.

TWINCLE: The WINdowing Computafional Linguistics Environment 11

ATRP-0011-91 FINAL REPORT

Lmm e =D
<f pname=inflection>
<fs type='inflection structure'>
<f name=case>
<valGrp><sym value=nominative><sym value=accusative></valGrp>
<f name=number><sym value=plural>
</Es>
Ll L, —=>

As it stands however, this representation leaves open the question whether the associated word is o be
understood as having both neminative and accusative case or as having either rominative or accusative
case. To make the interpretation specific, a type= must be used for <valGrp>. (This atiribute must also
be used for the tag <fGrp> that groups features, discussed in section “Feature Groups” on page 17.) The
possible values of this attribute are type=excl to indicate the exclusive disjunction of the grouped values,
type=incl to indicate the inclusive disjunction of the grouped values, and type=conj to indicate the
conjunction of the grouped values. Thus, to indicate that the representation above means the exclusive
disjunction of nominative and .accusative case values, we may write the following; in section “KHchoes”
on page 22, we show how a feature structure that contains a <valGrp type=excl> element can be
disambiguated.

e
<f name=inflection>
<fs type~='inflection structure'>
<f name=case>
<valGrp type=excl><sym value=nominative>
<sym value=accusative></valGrp>
<f name=nunber><sym value=plural>
</fs>
e L.

The <valGrp> clement can also be used to group <fs> elements, as in the following example showing
the possible interpretations of the English word sinks.

<f name~interpretation>
<yalGrp id=cnclinp.cvaltomip3ns type=excl>
<fs id=gneinp type='interpretive structure'>
<f name=stem>
<fg id=cncl type='stem structure'>
<f name=category><sym value=noun>
<f name=common><plus>
</fs>
<f name=inflection>
<fs id=pp type='inflection structure'>
<f name=number><sym value=plural>
</fs>
<fs idmcvaltnmip3ns type='interpretive structure’>
<f name=stem>
<fs id=cval type='stem structure'>
<f name=category><sym value=verb>
<f pame=auxiliary><minus>
</fs>
<f name=inflection>
<fs id=tnmip3ns type='inflection structure'>
<f name=tense><sym value=nonpast>
<f name~mood><sym value=indicative>
<f name=agreement>
<fs id=p3ns type='agreemenk structure'>
<f name=person><sym value=third>
<f name=number><sym value=singular>
</fs>
</fs>
</Fs>

TWINCLE: The WiNdowing Compntational Linguistics Environment 12

ATRP-0011-91 FINAL REPORT

A <valGrp> element which consists entirely of <fs> elements can also be pointed at by the fsVal= at-
uibute. Thus, assuming the independent existence of the appropriate elements, the preceding structure
can also be encoded as follows.

<f name=interpretation fsVal=cnclnp.cvaltamip3ns>

This feature, in turn, can appear in an encoding of the analysis of the ambiguous English word sinks, as
follows.

<fs id=sinksws type='word structure'>
<f name=form £sVal=sinksf>
<f name=interpretation fsVal=cnolnp.cvalinmip3ns>
</Ee>

Other uses for the <valGrp> element are discussed in section “Values as Atoms, Sets and Lists™,

Values as Atoms, Sets and Lists

In addition to providing for a number of different types of values for features, we provide for three dif-
ferent ways in which values may be organized, namely as afoms, sets and lists. To specify how a feature
is organized, one may specify the org= atiribute on the <f> element to take on one of the designated values
org=atom, org=set and org=list.

In the discussion to this point, we have assumed that values are considered to be atomic elements.
However, for many purposes, it is useful to be able to consider the values of certain features to be or-
ganized as either sets or lists. For example, suppose one wishes to provide an index-set feature in a feature
structure, whose value is a set of numerical indices, say {2, 13, 44}, One method of encoding this
feature-value combination is as follows.

<f name=indexSet orgeset><valGrp type=coni>
<nbr type=int value=2><nbr type=int value=13><nbr type=int value=44>
</valGrp>

Similarly, suppose one wishes to organize the alternate spelliﬁgs of a name as a list of strings. Such a
feature, with the value ["Kelly" "Kelley"] could be encoded as follows.

<f name=altSpell cxrg=iist>
<valGrp typewconj><str>Ke1£y</str><stx>Keliey</str></valGrp>

Note that in both these cases, we have grouped the members of the the set and the items of the list within
a <valGrp type=conj> tag. In the case of sets, this tag is interpreted as forming the set made up of the
elements specified within it. Thus repetitions of identical elements is ignored, as is the order in which
the elements are specified. The encoding of the set {2, 13, 44] above is equivalent to the following,
among infinitely many others.

<f name=indexSet org=set><valGrp type=conj>
<nbr type=int value=2><nbr type=int value=44><nbr type=int value=13>
</valGrp>

<f name=indexSet org=set><valGrp type=con)>
<nbr type=int value=2><nbr type=int value=13><nbr type=int value=44>
<nbr type=int value=2></valGrp>

In the case of lists, both order and repetition of the items matter, so the encoding above of the list
["Kelly" "Kelley"] is unique. To encode the list items in the opposite order, one would specify:

<f name=altSpell org=list>
<valGrp typewconj><str>Kalley</str><str>Kelly</str></valGrp>

TWINCLE: The WINdowing Computational Linguistics Environment 13

ATRP-0011-91 FINAL REPORT

To simplify the encoding of sets and lists which are uniformly of the type <sym:>, <nbr>, <str> or
«fs>, one can omit the <valGrp type=conj> tag; thus the initial encodings of the set {2, 23, 44 and of
the list ["Kelly" "Kelley"] are to be understood as equivalent to the following.

<f name~indexSet oxg=set>
<nbr type=int value=2><nbr type—int value=13><nbr type=int value=44>

<f name=altSpell org=list><str>Kelly</str><str>Kelley</str>

Any org= value on the <f> tag can be used with any value on the <valGrp> tag, and with any single
non-grouping value tag, with the interpretations given in the following table.

VALUE NOT VALGRP VALGRP VALGRP
CRG VALGRP type=excl type=incl type=coni
VALUE
atom | specified exactly cone interpretation interpretation
| value of specified varies varies
| values
|
set { singleton singleton any subsebt of set made up of
| comprised of of exactly set of values values specified
| value speci~ one of values specified
| fied specified
!
l1ist § one element cne element any list of list made up of
| list consist- list of exactly values speci- values specified
| ing of value one of values fied
| specified specified

When the value of a feature specified as org=set is a <valGrp type=inck> tag, then the value is under-
stood as any subset of the set made up of the specified values. For example, if one specifies the following
as the value of the <f name=indexSet>, the value is understood as any subset of the set {2, 13, 443; that
is, any member of the power set of that set.

<f pame=indexSet org=seL><valGrp type=incl>
<nbr type=int value=2><pbr type=int value=13><nbr type=int value=44>
</valGrp>

Among the subsets of the specified set is the null set, which is the set with no members. To refer to this
set directly, we provide the <null> element. To specify the il set as the value of <f name=indexSet>,
one may write:

<f pname=indexSet org=set><null>

The null set may also be used to specify the null list, which is the list with no items,

When the value of a feature specified as org=list is a <valGrp type=incl> tag, then the value is under-
stood as any sublist of the list made up of the items in the order given. For example, the following
specification means any sublist of the list ["Kelly" "Kelley"]: the null list, the list ["Kelly"], the list
["Kelley"] and the list ["Kelly" Kelley"].

<f name=altSpell oxg=list>
<valGzrp typemincl><str>Kelly</str><str>Kelley</3tr></valGrp>

When the value of a feature specified as org=set or org=list is a <valGrp type=excl> tag, then the value
is understood as a set or list of any single element in the group. For example, the value of the <f
name=altSpell org=list> tag in the following specification is a list whose single item is one of the
members of the group, either the list ["Kelly"] or the list ["Kelley"].

<f name=altS8pell org=list>
<valGrp type=exci><str>Kelly</str><str>Kelley</str></valGrp>

TWINCLE: The WINdowing Computational Linguistics Environment 14

ATRP-0011-91 FINAL REPORT

Finally, when the value of a feature specified as org=set or org=list is a nongrouping element, then the
value is understood as a set who single member is the specified element or as a list whose single item is
the specified element. For example, the value of the <f name=indexSet org=set> tag in the following
specification is the set {2}.

<f name=indexSelt org=set><nbr type=int value=2>

When the value of a feature specified as org=atom is a <valGrp> whose type= value is other than excl,
then the interpretation of the value may vary, and may not even be well defined. For example, both of
the following are syntactically well formed specifications, but there may be no interpretation provided for
gither of them.

<f name=spelling org=atom>
<valGrp typewconj><str>Kelly</str><str>Kelley</str></valGrp>

<f name=index org=atom><valGrp type=incl>
<nbr type=int value=2><abr type=int value=13><nbr type=int value=44>
</valGrp>

It may be possible to provide an interpretation for the first of these, say, as the concatenation of the
specified strings, and for the second as providing a choice among various index values, including conflated
values.

In the discussion so far of the org= attribute, we have considered its use on <f> elements only. This at-
tribute may also be specified on the <fDecl> elements in the feature system declaration discussed in
[Sim092]. If the org= attribute is specified in the <fDecl> tag for a particular feature, then every instance
of that feature is understood as having the org= specification found in its <fDecl>, and the specification
may be left off of the <f> tags. An org= value specification for a particular <f> tag that conflicts with
the org= value specification in its <fDeck> tag should be treated as an error.

Boolean, Default and Uncertainty Values

Next we define four special empty value elements: the boolean clements <any> and <none>, the «de-
fault> clement, and the <uncertain> element. The boolean elements may be used to indicate whether
the features they are associated with have values. The element <any> corresponds to the boolean value
true (i.e., that the feature it is associated with has a value), and the element <none> corresponds to the
boolean value false (i.e., that the feature it is associated with has no value). The <default> element may
be used to indicate that the feature it is associated with has its default value in the context in which it
appears. Finally, the <uncertain> element may be used to indicate uncertainty about what value, if any,
its associated feature has or even uncertainty about what feature is present.

The clements <anys, <none> and <default> are also designed to be used in conjunction with the <fDecl=
elements in the feature system declaration discussed in [Simo92]. To illustrate, suppose the <valRange>
tag in the <fDeck> tag for the gender feature is specified as follows.

<valRange><valGrp type=excl><sym value=feminine><sym value=masculine>
<gym value=neuter></valGrp></valRange>

Then the representation <f name=gender><any> is equivalent to:

<f namew=gender><valGrp type~excl>
<sym value=feminine><sym value=masculine><sym value=neuter></valGrp>

The interpretation of <f name=gender><none> is also restricted to mean that none of the values specified
in the <valRange> tag for the gender feature are present, but since all other value specifications are also
ruled out in virtue of not being in the value range of that feature), there is no practical effect on the in-
terpretation of <f name=gender><none> by specifying a value range for that feature.

Next, suppose that the default value for the gender feature is specified in the <valDefault> tag of its

<fDecl> tag as <sym value=feminine>. Then the representation <f pame=gender><default> is equiv-
alent 1o <f name=gender><sym value=femininex.

TWINCLE: The WINdowing Computational Linguisties Environment 15

ATRP-0011-91 FINAL REPORT

An <f> tag with no content and no fsVal= specified (see section “Structured Values” on page 10} is to
be understood as if the <default> tag appears as its content. Thus the representation <f name=gender:
(as part of an <fs> tag, with no value specified) is equivalent to <f name=gender><default>.

Using such representations as <f name=gender><any> and <f name=gender><default>, together with
an <fDecl> tag for the gender feature, can be thought of as underspecifying the value of the gender fea-
ture. In the current illustration, the first means both that the feature has a value and that any legally
possible value of the feature may be present; the second means that the one that is normally the value of
the feature is present. The ability to underspecify the values of features is based on the notion of
subsumption defined in [Simo92}.

The boolean elements <any> and <none> also have specific uses within <fsConstraints> and <fDecl>
tags in feature system declarations, as described in [Sim092]. For example, the element <any:> can appear
as the value of a feature contained within an <fs> of a particular type which appears in the <cond> tag
of an <fsConstraints> tag, to indicate that the feature must appear in feature structures of the designated
type (ie., that it is obligatory} and that when it does appear, it may appear with any of its legal values.
Similarly, <none> can appear in this way to specify that the feature cannot be present in feature structures
of the indicated type (i.e., that it is obligatorily absent from such feature structures).

For example, the following may appear as part of the «fsConstraints> of a feature system declaration o
indicate that a <fs type='agreement structure'> must be specified for a legal value of the number feature
but must not be specified for the category feature. All other features that are declared to have values are
understood to be optional in such feature structures.

<cond><fs type='agreement structure'>
<then><fs>
<f name=number><any>
<f name=category><none>
</fs>

We can impose further constraints on feature structures of a particular type in the <valRange> fags of
other features which take feature structures of that type as values. For example, suppose that <fs
type="agreement structure’> tags can occur as values of the features <f name=verbAgreement> and
<f name=adjAgreement>, but that when they occur as values of the first feature they must contain the
<f name=person> feature and not the <f name=gender> and <f name=case> features, Conversely, when
they occur as values of the second feature, they must contain the <f name=gender> and <f name=case>
features but not the <f name=person> feature. For the <f name=verbInflection>, we can provide the
first of the following <valRange> tags; for the <f name=nouanInflection>, we can provide the second
of the following <valRange> tags. Note that nothing needs to be said about the <f name=number> and
<f name=category> features, since they have already been dealt with in the <fsConstrainis> tag for
feature structures of this type.

<valRange>
<fs type='agreement structure'>
<f name=person><any>
<f name=gender><none>
<f name=case><none>
</Es>
</valRange>

<valRange>
<fs type='agreement structure'>
<f name=person><none’>
<f name=gender><any>
<f name=case><any>
</fEs>
</valRange>

As a result of declarations like these, feature structures can also be underspecified in text markup where
appropriate. For example, to indicate that the value of a particular instance of the feature <f

TWINCLE: The WiNdowing Computational Linguistics Environment 1o

ATRP-0011-91 FINAL REPORT

name=adjinflection> is an <fs type="inflection structure's> tag with features specified as plural number
and any gender and case, we may write:

<f name=adiInflecticn>
<fs><f name=number><sym value=plural></fs>

The same value when supplied for <f name=verblnflection> would be interpreted as an <fs
type="inflection structure’> with features specified as plural number and any person.

In order not to have to explicitly exclude nonoccurring optional features when marking up instances
without encumbering the <fsConstraints> and <valRange> specifications in the feature system declara-
tion, the default value of the <valDefault> tag within the <fDecl> tag is specified as <none>. Thus,
uniess a default value other than <nones is set for an optional feature, or it is explicitly given a valoe in
a particular instance, optional features within feature structures are assumed not 1o occur,

It is important to realize that the boolean values <any> and <none> are very different semantically from
the binary values <plus> and <minus>. The former pair are in fact variables over possible values and
hence cannot be used as specific possible values for features, whereas the Jatter pair can can be declared
as specific possible values for features in the <valRange> specifications for those features. For example,
the <valRange> for the feature <f name=auxiliary> may be declared as follows.

<valGrp type=excl><plus><minus></valGrp>

Then the specification <f name=auxiliary><plus> means that the feature has the <plus> value; <f
name=auxiliary><minus> means that the feature has the <minus> value; <f name=auxiliary><any>
means that the feature has either the <plus> or the <minus> value; and <f name=auxiliary><none:
means that the feature has no value.

Now suppose that the auxiliary feature is declared to take only the <plus> value. Then the specifications
«f name=auxiliary><plus> and <f name=auxiliary><any> are equivalent; <f name=auxiliary><mi-
nus> is invalid; and <f name=auxiliary><none>, as before, means that the feature has no value.

It is even possible to declare that a particular feature can never have values. For example, if the
<valRange> specification for the feature <f name=impossible> is <valRange></valRange>, then no
specific value can ever be assigned to the impossible feature, and the specifications <f
name=impossible><any> and <f name=impossible><none> are equivalent.

Finally, the specification <f name=gender><uncertain> means that it i3 uncertain what value this par-
ticular occurrence of the <f name=gender> has, including <amy>, <none> and the possibility that the
value is something not specified in the <fDeclk> for <f name=gender>.

To indicate uncertainty about what feature may be present, one may leave off the name= attribute of an
«f> tag whose value is <uncertain>, as follows: <f><uncertain>,

Feature Groups

We are now in a position 1o complete the description of the <fs> element, which can contain, besides <f>
elements, also <fGrp> clements.

The <fGrp> element is to be used whenever <f> elements within <fs> elements need to be specially
grouped. This situation can arise when ambiguity is to be economically represented without the use of
embedded <fs> elements or fsVal= attributes. For example, suppose we choose 10 represent the structure
of the noun and verb forms of the English word sinks as follows, using a flaf style of encoding.

<fs type='word structure'>
<f name=spelling><str>sinks</str>
<f name=lemma><str>sink</str>
<f name=category><sym valuesnoun>
<f pame=common><minus>
<f name~number><sym value=plural>

TWINCLE: The WiNdowing Computational Linguistics Environment 17

ATRP-0011-91 FINAL REPORT

<fs type='word structure'>
nane=spelling><str>sinks</str>
name=1emma><str>sink</str>
name~category><sym value=verb>
name=auxiliary><minus>
name=tense><sym value=nonpast>
name=mood><sym value=indicative>
name=person><sym value=third>
name=number><sym value=singulaz>

<fi
<$
<£
<f
<f
<f
<f
<£

These can be combined within a <valGrp> as the value of a <f name=choice> ¢lement, as follows.

<fs type='word structure'>
<f name=choice>

<yvalGrp type=excl>
<fs type='word structure'>

<f name=spelling><str>sinks</stx>
<f pame=lemma><str>sink</stz>

<f name=category><sym value=noun>
<f name=common><minus>

<f name=number><sym value=plural>
</fs>

<fs type='word structure'>

<f name=spelling><str>sinks</str>
<f name=lemma><str>sink</str>

<f name=category><sym value=verb>
<f name=auxiliary><minus>

<f name=tense><sym value=nonpast>
<f name=mood><sym value=indicative>
<f name=person><sym value=third>

<f name=number><sym value=singular>
</Es>

</valGrp>

</fs>

To avoid having to use the <f name=choice> element, and having to repeat the lemma and spelling fea-
tures, the latter can be factored out of the embedded <fs>s, and <fGrp> tags used instead of the <valGrp>
and the embedded <fs> tags, as in:

<fs type='word structure'>
<f name=lemma><str>sink</str>
<f name=spelling><str>sinks</str>
<EGrp type=excl>

<fGrp
<
<f
<f

type=coni>

name=category><sym value=noun>
name=common><plus>
name=number><sym value=plural>

</EGrp>

<fGrp
<f
<f
<f
<f
<f
<£

type=coni>

name=category><sym value~verb>
name=auxiliary><minus>
name=mood><sym value=indicative>
name=tense><sym value=nonpast>
name=parson><sym value~third>
name=number><sym value=singular>

</£Grp>
</ £Grp>
</E£s>

A more elaborate example showing how the factoring of information into <fGrp> elements can be used
to avoid repetition is the following, which provides a single structure for some of the various interpreta-
tions of the multiply ambiguous word wash. The id= attributes on various tags have been provided for
use in examples in sections “Echoes” on page 22 and “Ambiguity Resolution” on page 23.

TWINCLI: The WINdowing Computational Linguistics Environment i8

ATRP-0011.91 FINAL REPORT

<fg id~fswash type='word structure'>
<f name=lemma><str>wash</str>
<f pame=spelling><str>wash</str>
<fGrp id=fgl typewexcl>
<fGrp type=conj>
<f name=category><sym value=noun>
<f name=common><plus>
<f name=number><sym value=singular>
</£Grp>
<fGrp type=coni>
<f name=category><sym value=verb>
<f name=auxiliary><minus>
<fGrp type=excl>
<f name~finite><minus>
<£Grp type=conj>
<f name=finite><plus>
<f£Grp type=excl>
<f name=mood><sym value=subjunctive>
<fGrp type=coni>
<f name=mood><sym value=imperative>
<f name=tense><default>
<f name=person><sym value=second>
<f pame=number><any>
</EGrp>
<£Grp type=coni>
<f name=mood><sym value=indicative>
<f name=tense><sym value=nonpast>
<fGrp type=excl>
<fGrp Ltype=coni>
<f name—persen><sym rel=ne value=third>
<f namesnumber><any>
</E£Grp>
<fGrp id=fgll type=coni>
<f name=person><sym value=third>
<f name=number><sym value=plurai>
</£Grp>
</E£Grp>
</EGrp>
</fGrp>
</£Grp>
</ £Grp>
</E£Grp>
</ E£Grp>
</Es>

The preceding encoding describes the word wash as either a singular common noun form or as a non-
auxiliary verb form which is either nonfinite or finite. If it is finite then it either is a subjunctive mood
form, an imperative mood form (with certain other features defined), or a nonpast indicative mood form.
If the latter, then it is either a form which is any person other than third and any number or a form which
is third person and plural number.

The REL Attribute

The rel= attribute is provided for all value elements except <valGrp= and <uncertainz to specify whether
a value equal to that specified for the feature is to be used, or some other value. This atiribute can be
specified as rel=eq to indicate that the feature value itself is intended, and rel=ne to indicate either that
any legitimate value not equal to the designated feature value is intended or that no value is intended (if
the designated value is in fact not equivalent 10 <none>). A value specified as rel=ne can be thought
of as the negation of the corresponding value specificied as rel=eq. The default specification for the rel
attribute is rel=eq.

In the case of the <nbr> and <str> ¢lements, the rel= attribute may take on other values as well: rel=lt
indicates any value less than the specified feature value, rel=le any value less than or equal to the specified

TWINCLE: The WENdowing Computational Linguistics Environment 19

ATRP-0011-91 FINAL REPORT

feature value, vel=gt any value greater than the specified feature value, and rel=ge any value greater than
or equal to the specified feature value. The use of these rel= values for the <str> element requires that
a particular character and string ordering (or sorting) convention be specified.

Here are interpretations of feature-value tags with various specifications for the rel= attribute.
1) The following equivalences hold among the boolean tags, wherever they occur.

<none>
<any>

<any rel=ne> &=
<none rel=ne> ==
2} Suppose that the <valRange> in the <fDecl> specification for the feature <f name=auxiliary> is the
first one given in “Boolean, Default and Uncertainty Values” on page 15, in which the feature can
take on just the specific values <plus> and <minus>. Then the following equivalences hold.

<f name=auxiliary><plus rel=ne> == <f name=auxiliary><valGrp type=incl>
<minus><none></valGrp>

<f pame=auxiliary><valGrp type=incl>
<plus><ncne></valGrp>

<f name=auxiliary><minus rel=ne>

3) Suppose that the <valRange> in the <fDecl> specification for the feature <f name=auxiliary> is the
second one specified in “Boolean, Default and Uncertainty Values” on page 15, in which the feature
can take on only the specific value <plus>. Then the following equivalences hold.

<f pamewauxiliary><plus rel=ne> == <f name=auxiliary><any rel=ne> ==
<f name=auxiliary><none>
<f pame=auxiliary><none rel=ne> == <f name=auxiliary><plus> ===

<f name~auxiliary><any>

4) Suppose that the feature <f name=refIndex> is declared as taking any integer value. The following
specifies (i.e., subsumes) any integer value greater than O for that feature,

<f name=refIndex><nbr rel=gt value=0>

5) The following subsumes any integer value greater than 0 and fess than 10, i.e. from 1 to 9 inclusive,
for that feature.

<f name=refIndex><valGrp type=coni><nbr rel=gt value=0>
<nbr rel=it value=10></valGrp>

6) The following specifications are not equivalent. The first of these subsumes just the numbers that
are not equal to 1. The second of these subsumes both those numbess and also no value.

<f name=reflndex><valGrp type=excl><nbr rel=gt value=0>
<nbr rel=lt value=2></valGrp>
<f name=reflIndex><nbr rel=ne value=l>

7) Suppose that the following feature declaration is made:

<fhecl name=indexSet org=set>
<valRange><valGrp type=conj><nbr type=int rel=gt value=0>
<nbr type=int rel=lt vaiue=10></valGrp></valRange>
</fDecl>

Then the possible values for <f name=indexSet> are the members of the power set of the set {1,
2,3,4,5,6,7,8,9}.

8) Suppose that the <valRange> and <valDefault> tags in the <fDecl> specification for the feature <f

name=gender> are as given in section “Boolean, Default and Uncertainty Values” on page 15. Then
the following equivalences hold.

TWINCLE: The WINdowing Computational Linguistics Environment 20

9N

10)

1

ATRP-0011-91 FINAL REPORT

<f name=gender><default rel=ne> == <L name=gender><valGzp type=excl>
<sym value=neuber>
<sym value=masculine></valGrp>
<f name=gender> == <f name=gender><valGrp type=excl>
<sym rel=ne value=masculine> <sym value=neutexr>
<sym value=feminine></valGrp>

The following specification subsumes any string greater than (presumably longer than) the empty
string. Note that this specification is not equivalent to <str rel=ne></str, as the latter also subsumes
no valge.

<str rel=gt></str>

The following specification subsumes any string less than the string McQueen (i.e., any string pre-
ceding it in the declared sorting order).

<str rel=lt>McQueen</str>

AT

Suppose that the <valRange> tags for thé-features <f name=person> and <f name=number> have
the following contenis.

<1—~ In <fDecl name=person> >

<valGrp typewexcl><sym value~first><sym value=second><sym value=third>
</valGrp>

<t-— In <fDecl name=number> -—->

<valGrp type=excl><sym value=singular><sym value=plural></valGrp>

Next, suppose that the feature <f name=verbAgreement> has as its possible values all <fs
type="agreement structure'> tags with the number and person features declared as obligatory and
as having any of their possible values, and all other features declared as obligatorily absent,

Finally, suppose that the <f name=verbAgreement> is an obligatory feature in whatever feature
structures it can occur in. Now consider the following specification.

<f name=verbAgreement>
<fs rel=ne><f name=person><sym value=third>
<f name=number><sym value=singular></£fs>

This representation is equivalent under the conditions specified o the following,

<f name=verbAgreement>
<Fs><£Grp type=incl>
<fGrp type=conj>
<f name=person><valGrp type=excl><aym value=first>
<sym value=second></valGrp>
<f name=number><any></fGrp>
<fGrp type=coni><{f name=person><any>
<f name=number><sym value=plural></fGrp>
</ EGrp></fa>

To see how this equivalence is established, first note that since the feature <f
name=verbAgreement> is declared to be obligatory wherever it occurs, the possibility that the ori-
ginal specification of its value subsumes <nonex is ruled out.

Second, since a <fs> is equivalent to one in which its content is contained in a <fGrp type=conj>
tag, the content of the example <f name=verbAgreement> tag is equivalent to the following.

<fs rel=ne><fGrp type=coni><f name=person><sym value=third>
<f name=number><sym value=singular></fGrp></fs>

Third, by the logical equivalence of NEG(CONI(P, Q)) with DISIINEG(P), NEG(Q)), the rel=ne
specification can be distributed among the values of the features contained within the <fGrp
type=conj> tag, changing the latter to a <fGrp type=incl> tag, as follows.

TWINCLE: The WiNdowing Computational Linguistics Environment 21

ATRP-0011-97 FINAL REPORT

<fs><fGrp type=incl>
<f name=person><sym rel=ne value=third>
<f name=number><sym rel=ne value=singular></fGrp></fs>

Fourth, the <fGrp type=incl> in the preceding representation encompasses the following three pos-
sibilities.

1. <f name=person><sym rel=ne value=third>
2. <f name=number><sym rel=ne value~singular>

3. <f name=person><sym rel=ne value=third>
<f namespumber><sym rel=ne value=singular>

Fifth, the first two of these possibilities are incomplete: the first lacks a value for the obligatory <f
name=numbers, and the second lacks a value for the obligatory <f name=person>. Since no spe-
cific values can be provided for these missing features, the boolean value <any> must be provided,
and as a result, the third possibility becomes redundant. Therefore, we can substitute the appropriate.
<fGrp type=conj> tags for the <f name=person> and <f name=number> specifications in the
preceding <fs> tag; the value of the originial <f name=verbAgreement: tag above is thus equivalent
to the following.

<Fs><£Grp type=incl>
<fGrp type=coni><f name=person><sym rel-ne value=third>
<f name=number><any></L{Grp>
<fGrp type=coni><f name-person><any>
<f name=pumber><sym rel=ne value=singular></fGrp>
</ fGrp></Fs>

Finally, we can replace the <sym rel=ne> tags in the preceding by their equivalents msing <sym
rel=eq>, which yields the equivalence which was to be shown.

Echoes

The fsVal= attribute provides a way of pointing at a value ultimately represented by an <fs> element,
The <echo> element provides a way of pointing at any value, as long as the element representing it has
an id= value. The <echo> tag can be used also to point at <f>, <fGrp> and root <fs> elements, as well
as to values of <f> elements,

The following encoding is equivalent to that provided in section “Grouping Values” on page 11 for the
analysis of the structure of sinks.

<fs id=sinksws type='word structure'>
<f name=form><echo target=sinksf>
<f name=interpretation><echo target=cnclnp.ovaltnmip3ns>
</fs>

Using the <echo> element is not recommended when an alternative, such as fsVal= is available. Its main
utility in the feature structure domain is in making virtual copies of substructures other than <fs> elements,
particularly of large ones. For example, having created the large <fGrp id=fgl> for the representation
of wash given in “The REL Attribute” on page 19, one can reuse it over and over again in other stryclures,
such as the following, for wish.

<fs type='word structure'>
<f name=lemma><str>wish</str>
<f name=spelling><str>wish</stz>
<fGrp type=excl><echo what=content target=£gl>
<1—— One can also write, instead of the preceding line, the following:
<echo target=fgl>
——
</Es>

TWINCLE: The WiNdowing Computational Linguistics Environment 22

ATRP-0011-91 FINAL REPORT

On a much smaller scale, one could also provide an id= attribute for the value of the <f name=lemma>
tag, and echo it as the value of following <f name=spelling> tag, as in:

<£s type=‘word structure'>
<f name=lemma><str id=wishstr>wish</stzr>
<f name=spelling><echo target=wishstr>
lmm . >

Ambiguity Resolution

When encoding an inherently ambignous segment whose interpretation is contextually resolved, one may
have occasion to represent it as a disambiguated segment. That is, one may wish to represent not just i#s
interpretation in context, nor just its ambiguous interpretation out of context, but the two together. For
this purpose, the select= attribute is provided. This attribute s to be used either in elements which contain
elements with the exclude= attribute or in <fs> clements which contain grouping elements with the
type=excl attribute. In this section, we consider its use together with the type=excl atiribute on grouping
elements.

First, note that if the select= attribute appears in a <fs> which does not contain any element in which the
type=excl specification appears, nor any element in which the exclude= attribute appears, it has no effect.
For example, the following two encodings are equivalent.

<fs type='agreement structure’ select=p3>
<f name=person><sym id=p3 value=third>
<f name=number><sym id=ns value=singular>
</fs>

<fs type='agreement structure'>
<f name=person><sym id=p3 valuewthird>
<f name=number><sym id=ns value=singular>
</Es>

Now consider the following <fs> (which may be part of the representation of the analysis of the English
word was), which does contain a grouping tag with the type=excl specification.

<fs type='agreement structure' id=plp3ns>
<f name=person>
<valGrp excl>

<sym id=pl value=first>

<sym id=p3 value=third>

</valGrp>
<f pame=number><sym id=ns value~singulazr>
</Fa>

To disambiguate it, we can create a virtual copy and place a select= specification on it, as follows.

<fs type='agreement structure' id=slp3plp3ns select=p3>
<echo what=content target=plp3ns>
</fs>

In this encoding, the effect of the select=p3 specification is to indicate that the structure has been
disambiguated, so as to be equivalent to a virtual copy of the following.

<fs type='agreement structure'>
<f pame=person><sym id=p3 value=third>
<f name~number><sym ld=ns value=singular>
</fs>

To see how this works, first note that the exclusive disjunction of a group of elements is equivalent to the
inclusive disjunction of those elements in which each one excludes the others. In particular, the following
encodings are equivalent.

TWINCLYE: The WiNdowing Computational Linguistics Environment 23

ATRP-0911-91 FINAL REPORT

<valGrp type=excl>
<sym id=pl value=first>
<sym id=p3 value=third>
</valGrp>

<valGrp type=incl>
<gym id=pl exclude=p3 value=first>
<sym id=p3 exclude=pl value=third>
</valGrp>

Fach of these encodings specifies that the element identified as p/ is present if and only if the element
identified as p3 is not. The effect of the specification select=p3 in the <fs> ¢lement is that the element
identified as p3 is present in that structure. Hence the element identified as p/ is not. Finally, since a
<valGrp> element which effectively encloses exactly one element is equivalent to its enclosed element
no matter what its type, the disambiguation of the structure resulis.

Note that although the following encoding is equivalent to the one identified as pIp3ns (assuming an
appropriate feature system declaration), it cannot be disambiguated because there is no appropriate iden-
tifier for a select= atiribute to point to.

<fs type='agreement structure' id=nepZns>
<f name=person><sym id=nep? rel=ne value~second>
<f name~number><sym Ld=ns value=singular>
</fs>

One can use the select= attribute to indicate partial disambiguation, as well as complete disambiguation.
For example, the following example indicates that of the three mutually exclusive values in the unselected
structure, the two that are pointed at by the select= attribute remain available.

<fs type='inflection structure' select='cp cd'>
<f name=case>
<valGrp type~excl>
<gym id=cn value=nominative>
<sym id=cd value=dative>
<gsym id=ca value~accusative>
</valGrp>
<f name=number><sym value=singular>
</fs>

Another example of partial disambiguation involves a structure which contains two independent exclusive
disjonctions. Consider the following encoding of the German pronoun sie.

<fs id=fscpsie type='word structure'>
<f name=lemma><str>sie</str>
<f name=category><sym value=pronoun>
<f name=case>
<valGrp type=excl>
<sym id=csnm value=nominative>
<sym id=c¢csac value=accusative>
</valGrp>
<£Grp typesexcl>
<fGrp id=gefmnusg type=cani>
<f id=gefm name=gender><sym value=feminine>
<f ide=nusg name=number><sym value=singular>
</EGrp>
<fGrp id=gellnupl type=coni>
<f id=gell name=gender><any>
<f id=pupl name=number><sym value=plural>
</EGrp>
</ EGrp>
</Es>

To indicate that an occurrence of this segment is feminine-gender, singnlar-number, but leaving unresolved
its case, one may associate with it the following structure:

TWINCLE: The WINdowing Computational Lingaistics Environment 24

ATRP-0011-91 FINAL REPORT

<fs id=fscpsiel type='word structure'>
<echo what=content target=fscpsie select='gefmnusg'>

If an exclusive disjunction contains another exclusive disjunction, and all the values of the select= atiribute
point into the second disjunction, then the outer disjunction is implicitly disambiguated (the contained
exclusive disjunction just mentioned is selected). Thus the elaborate structure which encodes the ambi-
guity of the English word wask in section “Feature Groups” on page 17 can be disambiguated quite
simply. For example, to indicate that an occurrence is understood as a finite third-person plural-number
nonpast-tense indicative-mood verb form, one can associate with it a structure like the following.

<fs id=fswashdll type='word structure' select=fgli>
<echo what=content target=fswash>
</fa>

TWINCLE: The WINdowing Computational Linguistics Environment 25

ATRP-G011-91 FINAL REPORT

References

[Alle87]

[Chom#68]

[Go1d90]

[Gris90]

[Jeffo0]

{Jeff92]

[Kay86]

References

Allen, Y. Natural Language Under-
standing. Menlo Park, CA:
Benjamin/Cummings, 1987,

Chomgky, N. and Halle, M. The
Sound Pattern of English) New York:
Harper and Row, 1968,

Goldfarb, C.F. The SGML Handbook.
Oxford: Clarendon Press, 1990,

CGriswold, R.E. and Griswold, M.T.
The Icon Programming Language,
20d ed. Englewood Cliffs, NI
Prentice-Haill, 1990.

Jeffery, C.L. Programming in Idol:
An Object Primer, Technical Report
90-10b, Depariment of Computer Sci-
ence, University of Arizona, January
1990,

Jeffery, C.L. X-fcon: An Icon Window
Interface. Technical Report 91-1c,
Department of Computer Science,
University of Arizona, February 1992.

Kay, M. “Algorithm schemata and
data structures in syntactic
processing” In Grosz, BJ., Sparck-
Jones, K. and Webber, B.N., eds.,
Readings in Natural Language Proc-
essing, pp. 35-70. Los Altos, CA:
Morgan-Kaufman, 1986.

[Knut68]

[Pere87]

[Poll87]

[Shie86]

[Simo92]

[Sper90}

N

Knuth, DE. The Art of Comipiter
Programming, Vol, I: Fundamental
Algorithms. Reading, MA: Addison-
Wesley, 1968.

Pereira, F. Grammars and Logics of
Partial Information. SRI Iniernational
Technical Note 420. Menlo Park, CA:
SRI International, 1987.

Pollard, J. and Sag, LA. Information-
Based Syntax and Semantics: Volume
1: Fundamentals (CSLI Lecture Notes
13). Sianford, CA: Center for the
Study of Language and Information,
1987.

Shieber, S. An Introduction fto
Unification-based Approaches o
Grammar (CSLI Lecture Notes 4).
Stanford, CA: Center for the Study of
Language and Information, 1986.

Simons, G. Feature System Declara-
tions. Technical Report of the Anal-
ysis and Interpretation Committee,
Text Encoding Initiative, Available
from Computer Center, University of
Ilinois at Chicago, 1992,

Sperberg-McQueen, CM. and
Burnard, L., eds. Guidelines for the
Encoding and Interchange of
Machine-Readable Texts, Draft Ver-
sion 1,1. Chicago and Oxford: Text
Encoding Initiative, November 1990.

26

