Semantics 564 Lecture 13 Oct. 7, 1999
1 Types and sentential connectives

Recall that last time we had the following as our possible types of denotations:

A: a bunch of possible types of denotations

1) elements of D, the set of individuals
ii) elements of { 1,0}, the set of truth values
iii) functionsfrom D --> {1,0}

Let's adopt a notation, whereby we use "D" to indicate any set that includes all elements
of agiven type, and subscript it with aletter or formulathat indicates what the particular
typein questionis. So for i) and ii) we'll havei') and ii'), below:

A i) De
i Dy

where"€e" stands for entities, that isindividualsin thereal world, soi') isthe set of
entities, and "t" stands for truth values, that is{1, 0}, soii') isthe set of truth values.
What'siii') going to be? Let's reword it:

A: iii") the set of functions from Dgto D:.

Now, what are functions from the set of all x to the set of all y? Simply a set of ordered
pairs, the first of whose membersisan x and the second of whose membersisay, that is,
abunch of <x,y>. (Note of course that this set of ordered pairs, in order to be a function,
must map a particular y to every x, so it's not the same thing as the Cartesian product of
the two sets, but rather a (proper) subset of that Cartesian product). In any case, for
notational purposes, we'll say that the type of the function iniii) and iii’) is<e,t>, sinceits
domain (its arguments) are entities and its range (its values) are truth values, and we can
notate the set of all such functionsasiii"):

1i1") Deet>

More generally, we can make a recursive definition of permissible typesin the following
way:



1 (1) e and t are semantic types
(i) If a and b are semantic types, then <a, b> is a semantic type
(ili)  Nothing elseis a semantic type.

(iv) For any two types, a, b

<a, b> isdefined to be the type of functions whose arguments (domain) are of
type aand whose values (range) is of typeb.

(V) The set of entitiesis De.

(vi) The set of truth valuesis D¢

(vii)The set of functions of type <a, b>isD<«, ps.

Ok, now we're ready to proceed. Let's turn to the exercise on sentence connectives
on page 23. How do we treat the following:

2. It-is-not-the-case-that [ Toot loves Otto].

/S
[t-is-not-the-case-that S

N

Toot loves Otto

They warn us that we're going to invent a new possible semantic value, i.e. type
(presumably for the connective, since we know what the semantic values for Ss are;
they're truth values). So what is the type of the connective it-is-not-the-case-that going to
be?

Well, we know the type of S, it'satruth value. Truth values are not functions,
they're saturated expressions, like entities. If the binary-branching node under the
topmost Sis going to represent afunctional application, then the "word" it-is-not-the-
case-that must be afunction that takes truth values as its arguments, since its sister's type
isatruth value. And what will this function give asits value? Looking at the syntactic
type of the combination of it-is-not-the-case-that and S, we seethat it alsoisan S— and
the type of Ssistruth values. So it-is-not-the-case-that must be a function that takes
truth values as arguments and gives truth values as values, afunction of type <t, t>, a
type which is allowed in our definition of types above.



3. [[it-is-not-the-case-that]] =f: {0,1} to{0,1}

And what will wefill in the ellipse with? Let's consider our predicate-logical definition of
it-is-not-the-case-that:

4. [[yPI] =1iff [[P]]=0

So it should be pretty obvious: this function will give the value 1 iff the value of
itsargument is 0.
[[it-is-not-the-case-that]] =f: {0,1} to{0,1}
Foral xT Dy, f(x)=1iff x=0

So we've introduced a new type, D« >, and defined anew lexical item, it-is-not-the-
case-that. We don't need anew rule to interpret the structure of "It is not the case that
Toot loves Otto", because our rule for Ssworks perfectly well (if you ignore the linearity
problem).

2 Transitive functions
Let's consider the other sentential connectives, and andor. Now, the trick with theseis

that H& K give ternary-branching structures as the representation of these, yet we have to
stick with the idea that syntactic combination is functional application.

/ S/\
S conn S

We know, as above, that the value of the S nodesis atruth value, not a function, so the
two S nodes must be arguments. The connective, again, must be the function, and since
there's two values immediately syntactically connected to it, this function must take not
one truth value, but rather a pair of truth values <x,y>, asits argument. Thiswill be a 2-
place function. The pair of truth valuesit takes will be a member of {0,1} x{ 0,1}, since
either sentence could have either truth value. So these functions will look like this:

5. [[and]] =f: {0,1}x{ 0,1} to {0,1}
For al <x,y>1 {0,1}x{0,1}, f(<x,y>)=1iff x=1 and y=1



(Thisisthe characteristic function of the set {<1,1>}

6. [[or]] =f:{0,1}x{0,1} to{0,1}
For al <x,y>1 {0,1}x{0,1}, f(<x,y>)=1iff x=1 or y=1

(Thisisthe characteristic function of the set {<1,0>, <1,1>, <0,1> }

And now that we've got our new lexical entries and our new type, we need a structural
rule for interpreting the ternary branching structure. It will look like this:

/ S/\
b conn

9., then [[al] = [[conn]](<[[b]], [[d]>)

7. If a hasthe form

Now what about transitive verbs? Consider what our denotations for them in first order
predicate logic were:

8. [[love]] {<x,y>1 Dex De|x lovesy}

Again, they were sets of ordered pairs. Now, we could just make our function
which denotes love the characteristic function for this set, just as we did for the sentential
connectives above:

9. [[love]] =f: Dex De to{0,1}
For al <x,y>1 DeX De, f(<x,y>)=1iff x lovesy.

We could do this. But it would be wrong. Why would it be wrong?
It would be wrong because the structure of "Toot loves Otto" isn't the one given in
10, but rather the one given in 11:

10.

NP \ NP

Toot loves Otto



11.

/ S\
NP VP
Toot / \
| i
loves Otto

So, if 11. isthe structure of "Toot loves Otto", what does the verb "Love" haveto
do? We know that S has the denotation of atruth value, and that "Toot" and therefore NP
has the denotation of an entity, so the denotation of VP hasto be a function from entities
to truth values. That's not so hard. Now the tricky part: if VP has the denotation of a
function from entitites to truth values, and the NP dominating "Otto" has the denotation
of an entity, then "love" has to be a function from individiuals to functions from
individualsto truth-values. That is, it hasto take an individual as its argument, and give
asitsvaue afunction from individualsto truth values -- a particular function. Here it is:

12. [[loves]] =f: De-->{g: De-->{0,1}}
foral xT De, f(X) = gx: De-->{0,1}
foralyl De, gy(y) = 1iff y lovesx

Of course, we aso have to give anew rule for interpreting the VP node, since so far we
only know how to interpret non-branching VPs. Since all branchingness represents
functional application, the new rule will look like this:

VP

N

13.  Ifa hastheform P 9., then [[a]] = [[b]1([[d])



13.
S [[SI]= 9pii0 ([[Toot 1]) = Liff Toot loves Otto

NP VP [[VA] = doto: D -->{0,1}
| foradly ID,g oml
Toot iff Yy loves Otto
[[Toot]] v NP

loves Otto
[[loves]] [Ottd]

=f:D-->{g: D-->{0,1}}
foral xI D, f(x) =g : D-->{0,1}
foralyl D, a(y)=1iff ylovesx
What's the type of the function for loves? It's a function from entities to functions from
entities to truth-values, so its< e, <g,t> >. And the set of all such functionsis D<g <gt>>-
(Thisisapermissible type, according to our recursive definition of types, above).
However, it'simportant to realize that thisis a 1-place function, whose value is another 1-
place function. Y et "love" seems to take two arguments, i.e. in our set-theoretical
notation, it denoted a set of pairs of entities, and our first attempt at defining love took the
charasteristic function of that set of pairs asits denotation. What's the relation between
that characteristic function and the 1-place function we've arrived at here?

3 Schonfinkelization

Let'stake a universe where Dg contains three cats, Otto, Toot and Calvin. Otto loves Toot
but not Calvin, and Toot loves Otto and Calvin, and Calvin doesn't love anybody, except,
of course himself (all cats love themselves). In this universe, our characteristic function
of the two-place predicate love looks like this, in table form:

14. /‘<O,T> ->1 \

<0,C>-->0
<0,0> --> 1
<T,0>-->1
flove = <T,C>-->1
<TT>-->1
<C,0>-->0
<C.T>->0

<C,C>-->1

o _/



If you Schonfinkel (or Curry) this two place function, what you do isturn it into a one-
place function from entities to functions from entities to truth values. Y ou can do it either
way, taking the first argument of the pair as the single argument of the Schonfinkeled
flove, OF taking the second argument as the argument of the Schonfinkeled fove. The
functionsin 15 and 16 represent each of these strategies respectively, first left-to-right
Schonfinkelization, and the second right-to-left Schonfinkelization.

14, (T )
O-> C-->0
O0-->1
(O -->1)
flove = T->| C->1 Schonfinkeled left-to-right
T->1
"0 0

> T-->0

C--
o (C=>1 )/

15. f T->1 \
O C-->0

0->1
0o->1
flove = T--> C-->0 Schonfinkeled right-to-left
T->1

>'O--> 0'<

C--> T-->1
\ KC--> 1)_/

Both ways, we end up with just 1-place functions, but of course, the value of the figve
function remains the same for each real-world situation, so you haven't changed its truth-
functionality. Y ou can do this for any n-place function. Which one corresponds to our
function for love above?

Right, the right-to-left one, because the structure of the VP dictates that the V combine
first with its object and then the result of that one is combined with the subject. Since the
value of fiove = [[lOVe]] when combined with an object x is yet another function, gy, we
can say that fjove(X)=0x, and hence gy(y)= fiove(X)(Y). (We could aso notate this [f(x)](y),
to make it clearer that f(x) is afunction, but we don't really need to, because reading it
that way isthe only way that makes sense). fiove(X)= verb+object, and fiove(X)(Y) =



verb+object+subject. Here's where we have a function that |ooks sort of like the predicate
logical formulaLove(x,y), but in this case, the leftmost argument is the object, and the
rightmost argument is the subject.

4 | -notation

Switching from sets to characteristic functions was the big advance that let us
make a compositional semantics out of first-order predicate logic. So far, we're writing
functionsin afairly cumbersome way.

For [[smoke]], we've got the following notation:

16.  [[smoke]] =f: D¢ --> Dy
for every x T Deg, f(X) = 1iff x smokes.

There's a shorthand way of writing this function:

17.  f:[I x: xI De. x smokes]

Thisisthe function that maps any x in De to 1 iff X smokes. In general, if we're using
lambdas this way, the first element after the lambda-term is the domain, then there's the
period, and then there's the condition that must obtain in order for the value of the
function to be 1.

18. In general, if the lambda term denotes a truth value (i.e. if the function maps some
type to truth values), then:
[l a: b. g isthat function that maps any object such that b to 1 iff g

Now, what about a function like this one:

19.  fi[N->|N
for every xI |N, f(x)=x+1

Thisisafunction from natural numbers to natural numbers which gives the value,
integer+1 for any x=integer. Now, here, we're not mapping onto truth values, we're
mapping onto another type of thing. The lambda notation for this sort of function will
look just the same as for the other sort of function:



20.  f:[Ilx:xl N.x+1]

Thisisafunction that maps any x in the natural numbersto x+1. In this case, the item
after the . in the lambda notation isn't giving a condition which must obtain if the value of
the function isto be 1, rather, it's actually giving the value of the function.

21. In generdl, if the lambda term denotes a thing (any type of thing), then
[l a: b. g isthat function that maps every a such that b to g

So, we've got two ways of using the lambda-notation. In the first way, the item after the .
gives the truth condition that must obtain for the function to give the value 1, and in the
second way, the item after the . gives the actual value of the function. This may sound
confusing, but it'sreally not. If gis a sentence, then the function denoted by the lambda-
term gives atruth value, and you read it asin 18; if gisathing (anything other than a
sentence), then the function denoted by the lambda-term gives g. (So, in 17, gis"x
smokes", which is a sentence, so gis the condition that must apply for the function to
givethevaluetrue, and in 20, gis"x+1" which isathing, so x+1 must be the value of
the function).

Let's seeif we can write our function for love in lambda-notation. We're going to have to
use both conventions for reading lambda-terms to get it:

22. [[loves]] =f: De-->{Q: De-->{0,1}}
foral x1 De, f(X) = gy: De-->{0,1}
foralyl De, gy(y) = 1iff y lovesx

23.  Firdt, let'swrite the function gy in lambda notation:

[[loves]] =f: De-->{g: De-->{0,1}}
foral xT De,f(X)=[ly:y1 De.ylovesx]

The function g, maps an entity to atruth value, so the lambda-term that denotesit is of
thefirst type (in 18), and has a sentence for g. Now, let's go ahead and write the function f
in lambda notation:

24.  [[loves]] =[I x: xT De.[ly:yT De.ylovesx]]



Now, in this case, gisathing, in fact, amember of the set of functions of type <et> (a
member of D>, SO the value of this function is not atruth value, but that thing — to
read this lambda-term, we use the convetion in 21.

Since lambda-terms are functions, they can take arguments:
25.  [I x:xI De.x smokes](Ann)

isasensible string, and has the value 1 iff Ann smokes.
What about

26. [Ix:xT De.[ly:y1 De.y lovesx]](Toot)
Thisisasensible string, and itsvalue is 27.

27. [ly:yl De.ylovesToot]

Since 27 isitself afunction, 28, isasensible string, and has the value 1 iff Otto loves
Toot:

28. [ly:yl De.y lovesToot](Otto)
Now, consider 29. Isit equivalent to 267
29. [Ix:xT De.[ly:y1 De.y lovesx](Toot)]

Nope, it's not. Here, Toot isthe argument of thel y term. What's the value of thel y term
with Toot asit's argument? It's "1 iff Toot loves x". That means that 29 can be written as:

30. [Ix:xT De. Tootlovesx]

(thiswill switch our lambda-term | x to something that needs to be read by the first
convention from 18) which says, thisis afunction which istrue of an entity x iff Toot
loves x.

Which of the following is equivalent to which?

3. (@ [Ix:x1 De.[ly:y1l De.y lovesx](Toot)](Otto)

10



32.

(b) [Ix:xT De.[ly:y1 De.y lovesx]](Toot)(Otto)
(© [Ix:xT De.[ly:y1 De.y lovesx]](Otto)(Toot)
(d [Ix:xT De.[ly:y1T De.y lovesx](Otto)](Toot)

Mor e shorthand:
Sometimes the domain condition is just shovelled right in with the lambda-term:

[I X De. x smokes]

This shouldn't cause any confusion, as long as you're careful with your brackets

(cf. H&K p.38 ex (15)).

Homework:

So far, the semantic component H& K give consists of the following:

A:

(i)
(i)

(iii)

(iv)

v)

Possible semantic values, or types

1) elements of D, the set of individuals
ii) elements of {1,0}, the set of truth values
iii) functionsfrom D --> {1,0}
iv) functions from { {1,0}x{1,0} } -->{1,0}
(we made these up for the binary connectivesin 5 & 6 above)

Lexica entries

[[Ann]] = Ann
[[Jog]] = Joe
...etc. for other proper names

[[smokes]] f:D-->{1,0}
Foral xT D, f(x) = 1iff x smokes

[[snoreg]] f:D-->{1,0}
Foral xT D, f(x) = 1iff x snores

[[loves]] =f: De-->{g: De-->{0,1}}

foral x1 De, f(X) = gy: De-->{0,1}
foralyl De,gu(y) = 1iff y lovesx

11



(vi)

(vii)

(viii)

(i)

(i)

(iii)

(iv)

(v)

(vi)

[[it-is-not-the-case-that]] =f: {0,1} -->{0,1}
Foral xT Dy, f(x)=1iff x=0

[[and]] =f: {0,1}x{ 0,1} -->{0,1}
For all <x,y>1 {0,1}x{0,1}, f(<x,y>)=1iff x=1 and y=1

[[or]] =f:{0,1}x{0,1} -->{0,1}
For al <x,y>1 {0,1}x{0,1}, f(<x,y>)=1iff x=1 or y=1

Rules for non-terminal nodes:

S

/N

If a hastheform P 9 then [[a]] = [[d] ([[b]])

Z
3

If a hastheform , then [[a]] =[[b]]

If a hastheform ,then[[a]] =[[b]]

o —< oc—2 T —
mv)

If a hastheform , then[[a]] =[[b]]

VP

N

If a hastheform P 9, then [[a]] = [[b]I([[d])

Y
|

If a hastheform P ,then[[a]] =[[b]]

12



S

SN

vii) Ifahastheform © ™M 9 then[[a]] = [[conn]](<[Ib], [[]>)

1 P. 31 Exercise 2.

2. P. 40 Exercise 3.

3. p. 32 Exercise 3 (thisislooong. Do it thoroughly, though, in particular, be
pedantic about (c). It'll pay off later, honest. Also, when you give the new lexical entry
for introduce, giveit in both | -notation and the longer, easier-to-understand notation of

the type in 22 above).

4. p. 39. Exercise 1.
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