
1

564 Lecture 21 Nov. 4, 1999

1 Homework notes:

1. What we're doing when we calculate the value of a tree like the one "Dino is the brown
dinosaur that licked Fred", is we're calculating its truth-conditions, i.e. we're finding out what
state of affairs must hold in the real world to make that sentence true. So saying that

[[Dino is the brown dinosaur that licked Fred]] means that Dino is the brown dinosaur that
licked Fred, isn't exactly right. Rather, [[Dino is the brown dinosaur that licked Fred]] =
(means) 1 iff Dino is the brown dinosaur that licked Fred. Here's the difference: Saying that

"[[Dino ..]] means that Dino is the brown dinosaur that licked Fred" implies that speakers only
utter true sentences (or else that they cause situations to come about by speaking!). We know
that's not the case. Rather than say "[[Dino ..]] means that Dino is the brown dinosaur that licked

Fred iff the speaker is telling the truth", we say rather that it "[[Dino ..]] means true iff Dino is
the... ".

2 Review: How To Apply Rules of Interpretation to Branching Nodes

Many people seem to have a problem figuring out whether to apply F.A. or P.M. (or, for that

matter, P.A.) when they come to a branching node. Here's some rules of thumb:

(1) Guess (educatedly) what the types of the daughter nodes are going to be

We've found, generally, that there's a significant correspondence between syntactic category and
type. So, in general, so far:

DP <e>.
VP <e,t>.
NP <e,t>

AdjP <e,t>
CP <e,t>. (because of PA)
V <e,t> (if intransitive)

<e,<e,t>> (if transitive)
<e,<e,<e,t>>>.

[[the]] <<e,t>,<e>>
IP <t> (same as "S")

(2) Look at the three rules we have to determine the interpretation of branching nodes, and
decide which one applies, based on the types of the daughter nodes, .
If it makes it clearer, use the following metric:

2

(a) If the daughter nodes are both of type <e,t>, Predicate Modification applies.

(b) If the daughter nodes are something with an index (e.g. a relative pronoun whi or
suchi, or the way some of you did last week's homework, thati) and something of type <t> (e.g.
C', IP), then P.A. applies

(c) Otherwise, F.A. applies (and one thing had better be a function with the type of the
other thing in its domain, i.e. the part before the comma in the type of the first one had better be
the type of the second one. So, in theory, it's certainly possible to have an adjective take a noun

as its argument, but in that case, your lexical entry for the adjective had better be of the right type
(<<e,t>,<e,t>>)).

(3) Rewrite the node's denotation ([[XP]]) in the template provided by the applied rule. So,
for any node [[XP]], whose daughters are [[YP]] and [[ZP]]:

if F.A. applies:
[[XP]] = [[YP]]([[ZP]])
(if YP is the function taking ZP as its argument, otherwise the other way around)

if P.M. applies:
[[XP]] = [λx ∈ De . [[XP]](x) = [[YP]](x) = 1]

if P.A. applies
[[XP]] = [λx ∈ De . [[ZP]]x/i]

(if YP is the indexed relative pronoun, otherwise the other way around)

Important: the letter abstracted by lambda and the letter assigned to the index have to be
the same...

(The actual forms of the rules in question:
F. A. Functional Application

If α is a branching node and {β,γ} the set of its daughters, then for any assignment a, if

[[β]]a is a function whose domain contains [[γ]]a, then [[α]]a = [[β]]a ([[γ]]a).

P. M. Predicate Modification
If α is a branching node and {β,γ} the set of its daughters, then, for any assignment a, if [[β]]a

and [[γ]]α are both functions of type <e,t>, then

[[α]]a = [λx ∈ De . .[[β]]a(x) = .[[γ]]a(x) =1]

P.A. Predicate Abstraction

3

If α is a branching node whose daughters are βi and γ, where β is a relative pronoun or "such",

and i∈|N, then for any variable assignment a, [[α]] = [λx ∈ De . [[γ]]a
x/i

]

So, class project:
(a) assign types to every node in this tree

(b) for every node, tell me what rule you have to apply to find its denotation (including the non-
branching nodes)

4. IP1

DP1 VP1

D1 NP1 V1 DP2

the AdjP1 N'1 fondled D2 NP2

Adj1 N1 CP1 the AdjP2 N'2

short pyro who4 C'1 Adj2 N2 CP2

C1 IP2 gas can which2 C2 IP3

∅ DP3 VP2 ∅ DP4 VP3

D3 NP3 V2 DP5 t2 V3 AdjP3

the N3 wanted t4 was Adj3

police empty

C'2

4

Node Types of daughters Rule Node Types of daughters Rule

IP1 the
DP1 V2

D1 wanted
the DP5

NP1 t4

AdjP1 VP1

Adj1 NP2

short AdjP2

N'1 Adj2

N1 gas
pyro N'2

CP1 N2

who4 can
C'1 CP2

C1 which2

IP2 C'2

DP3 C2

D3 IP3

the DP4

NP3 t2

N3 VP3

police V3

VP2 was
V1 AdjP3

fondled Adj3

DP2 empty
D2

3 Review 2: Applying the definition of lambda notation

When you do have functional application going on, you're eventually going to have to use the
definition of lambda-notation to figure out what the denotation of the node is. Everybody seems
to be fine with simply plugging in an individual in the position of the lambda-term, but it can get
confusing when there's a lot of stuff happening at once, or when the argument is not an

individual but a function.

Let's do some examples:

5

5.
(a) [λx ∈ De . x is a cat](Felix) = __

(b) [λx ∈ De . x is calico]([[Felix]]) = _______________________________________

(c) [λx ∈ De . [λy ∈ De . y chased x]](Rover)(Felix) = _____________________________

(d) [λx ∈ De . [λy ∈ De . y chased x](Rover)](Felix) = ______________________________

(e) [λx ∈ De . [[calico]](x)=[[cat]](x)=1] = ______________________________________

(f) [λf ∈ D<e,t> and there is only one x∈De s.t. f(x) =1 . the unique y∈De s.t. f(y)=1]([λx ∈ De

. [[calico]](x)=[[cat]](x)=1]) = __

(g) [λx ∈ De . [λw ∈ De . [λy ∈ De . y is a cat](w)=[λz∈De . z chased Rover](w)=1](x)=[λv ∈
De . v is calico](x)=1](Felix) = ___
__

__
__

Homework:

1. For the sentence "Felix is a calico cat who chased Rover", draw the tree and calculate its truth

conditions as far as you can without using the Lexical Terminals rule -- i.e., don't fill in the
definitions (be they functions or individuals) of the lexical items. (Note that this "is" is not the
same as the "is" in "Felix is the calico cat who chased Rover"; rather, this is the vacuous is we've

assumed so far for sentence slike "Felix is a cat" and "Felix is calico".)

2. Fill in the lexical items one by one, applying the definition of the lambda-notation whenever

you can as you go -- that is, reduce the terms as soon as you can. (Some terms you'll have been
able to reduce somewhat even before you fill in the lexical items: specifically, those created by
P.M. and the definition of "the" -- you should have done that in the previous question).

2. Bring a question to class on Tuesday -- and not a question of the "What have you got in your
pocketses?" class either!

