
564 Lecture 16 Oct. 19, 1999

1 Homework

1. Characteristic functions of the sets making up the denotation of Radores and

 Rassigns to:

a) fadores

<Jacob, Jacob> --> 0

<Jacob, Maria> --> 1

<Maria, Maria> --> 1

<Maria, Jacob> --> 0

(b) fassigns to

<Jacob, Jacob, Jacob> --> 0

<Jacob, Jacob, Maria> --> 1

<Jacob, Maria, Jacob> --> 0

<Jacob, Maria, Maria> --

>

0

<Maria, Maria, Maria> --
>

0

<Maria, Maria, Jacob> --
>

0

<Maria, Jacob, Maria> --

>

1

<Maria, Jacob, Jacob> --> 0

2. Schönfinkeled versions, right-to-left:

(a)

Jacob --> Jacob --> 0

Maria --> 0

Maria --> Jacob --> 1

Maria --> 1

(b)

Jacob --> Jacob --> 0

Jacob --> Maria --> 0

Maria --> Jacob --> 0

Maria --> 0

Jacob --> Jacob --> 1

Maria --> Maria --> 1

Jacob --> Jacob --> 0

Maria --> 0

3. (a) The right-to-left Schönfinkelization of fadores is indeed a suitable

denotation for the English verb. The verb takes its object (the rightmost argument
in the ordered pair of the set-theoretic representation) as its first argument, and

maps that to a function which takes its subject (the leftmost argument in the pair)
as its argument and maps that to a truth-value.

(b) The right-to-left Schönfinkelization of fassigns to is not a suitable

denotation for the English verb. Assuming a syntactic tree for "Jacob assigns
Jacob to Maria" that is the same as the tree for introduce, then the verb does not
combine with the rightmost argument in the set-theoretic ordered triple first.

Rather, it takes the intermediate argument as its direct object, then the rightmost
argument as the object of to, and finally the leftmost argument.as its subject.

4.
(a) [λx ∈ D . [λy ∈ D . [λz ∈ D . z introduced x to y]]](Ann)(Sue) =

[λy ∈ D . [λz ∈ D . z introduced Ann to y]](Sue) =

[λz ∈ D . z introduced Ann to Sue]

(b) [λx ∈ D . [λy ∈ D . [λz ∈ D . z introduced x to y](Ann)](Sue)] =

[λx ∈ D . [λz ∈ D . z introduced x to Sue](Ann)] =

[λx ∈ D . Ann introduced x to Sue]

(c) [λx ∈ D . [λy ∈ D . [λz ∈ D . z introduced x to y](Ann)]](Sue) =

[λy ∈ D . [λz ∈ D . z introduced Sue to y](Ann)] =

[λy ∈ D . Ann introduced Sue to y]

(d) [λx ∈ D . [λy ∈ D . [λz ∈ D . z introduced x to y]](Ann)](Sue) =

[λy ∈ D . [λz ∈ D . z introduced Sue to y]](Ann) =

[λz ∈ D . z introduced Sue to Ann]

(e) [λf ∈ D<e,t> . [λx ∈ D . f(x) =1 and x is gray]]([λy ∈ D . y is a cat]) =

[λx ∈ D . [λy ∈ D . y is a cat](x) =1 and x is gray] =

[λx ∈ D . x is a cat and x is gray]

(f) [λf ∈ D<e, <e,t>> . [λx ∈ D . f(x)(Ann)=1]]([λy ∈ D.[λz ∈ D.z saw y]])=

[λx ∈ D . [λy ∈ D.[λz ∈ D.z saw y]](x)(Ann)=1] =

[λx ∈ D . [λz ∈ D.z saw x](Ann)=1] =

[λx ∈ D . Ann saw x]

(g) [λx ∈ |N . [λy ∈ |N . y > 3 and y < 7](x)] =

[λx ∈ |N . x > 3 and x< 7]

(h) [λz ∈ |N .[λy ∈ |N . [λx∈ |N . x > 3 and x < 7](y)](z)] =

[λz ∈ |N .[λy ∈ |N . y > 3 and y < 7](z)] =

[λz ∈ |N . z > 3 and z< 7]

or

[λz ∈ |N .[λy ∈ |N . [λx∈ |N . x > 3 and x < 7](y)](z)] =

[λz ∈ |N . [λx∈ |N . x > 3 and x < 7](z)] =

[λz ∈ |N . z > 3 and z< 7]

3. Bonus question:

Drawing the (binary-branching) tree for "Jan and Ann carried the chair up the

stairs" this is what we get (avoiding the detail of the structure of the VP),
including the types that all the nodes must have:

NP

Conn

ConnP

NP

and Ann

Jan

NP

S

VP

carried the
chair up the
stairs

<e>

<e>

<e,e>

<e,<e,e>>

<e>

<e,t>

<t>

We can see that and must be of type <e,<e,e>>, in order to make the type of the
conjoined NP work out right. Here's a stab at the actual function:

[[and]]: [λx ∈ D . [λy ∈ D . the entity ∈ D that is a pair consisting of x and y]]

This has a major fudge in it. It is considering a "pair" an entity, an element of De,

when really the (unordered) pair {x,y} is not a member of De but rather of DexDe.

But heck. The result is that Jan and Ann are necessarily carrying the chair up the
stairs together, since it is the "pair" entity that is the subject argument of the VP.
Once we get to figuring out DPs as (the characteristic functions of) sets of

properties, we'll see how we can fix this.

 2 Nonverbal predicates

So far, we're getting along with just our three rules. You'll have noticed that
sometimes there's a branching node that gets interpreted as a non-branching node

([to Jan] in "Ann introduced Sue to Jan" is interpreted as [Jan]). There'll be a few
more of these. One of them is "be".

4. (a) [John is rich].
(b) I consider [John rich].
(c) I consider [John to be rich].

Based on the equivalence of meaning of 4bc, we can for the moment assume that
"be" makes no semantic contribution at all. The verb "to be", and "is" in our

sentence 4a, will be treated as vacuous; for the moment, we'll interpret "John is
rich" as "John rich", just like "John smokes". This means that a word like "rich"
will have the same denotation as an intransitive verb, a function from <e,t>.

5. [[rich]] = [λx ∈ De . x is rich]

This is the characteristic function of the set of things that are rich.

Now, last time we had a vacuous node, we had a specific interpretation rule for it

(the PP in the "introduce" tree). What we'll do here is just note that certain items
are vacuous, and assume they don't count for semantic interpretation -- that is, a
branching node containing a vacuous item on one branch is the same as a non-

branching node, and gets the denotation of its non-vacuous daughter.

Now, remember in our predicate calculus we had to treat not only verbs and

adjectives as predicates, but nouns as well; something like "All cats are
mammals" was realized as "If x is a cat, then x is a mammal."

6. All cats are mammals = "If x is a cat, then x is a mammal"
∀x(Cat(x) --> Mammal(x)).

All cats play ="If x is a cat, then x plays."
∀x(Cat(x) --> Play(x))

We'll do the same thing in our lambda calculus here: we'll assume that nouns are
the characteristic function of the set they denote, a function of type <e,t>, just like

intransitive verbs and adjectives.

7. (a) Kaline is a cat.

(b) I consider Kaline a cat.
(c) I consider Kaline to be a cat.

It's clear that the same arguments that derived the vacuousness of "be" above, that
"a cat" has to have the same denotation as "rich" or "smokes", that is, a function
of type <e,t>. We'll assume that that's the denotation of "cat", and the "a" is

vacuous in the same way that "be" is. (This won't do forever, but it'll be fine for
now).

8. [[cat]] = [λx ∈ De . x is a cat]

Similarly for a preposition like "out":

9. John is out.
[[out]] = [λx ∈ De . x is not at home]

Most prepositions are not intransitive, though, but rather transitive, and we'll treat
them like we treated transitive verbs above, as functions of type <e,<e,t>>:

10. Dorothy is in Kansas.

S

NP VP

V

NP

is

PP

P

in Kansas

<e>

<0>

<e,<e,t>> <e>

<e,t>

<e,t>

<t>

Dorothy

[[in]] = [λx ∈ De . [λy ∈ De . y is in x]]

There are transitive Ns and Adjs too, we'll treat them the same way:

11. (a) Pima County is part of Arizona.

S

NP VP

V

PP

is

NP

N

<e>

<0>

<e,<e,t>> <e>

<e,t>

<e,t>

<t>

Pima County

part

of Arizona

NP<e>P <0>

(Note that "of" is gong to be another vacuous node. This vacuity is in fact

perfectly reasonable, and won't have to be altered except in one special case.)

[[part]] = [λx ∈ De . [λy ∈ De . y is part of x]]

(b) Dorothy is fond of Toto.

S

NP VP

V

PP

is

<e>

<0>

<e,<e,t>> <e>

<e,t>

<e,t>

<t>

of

NP<e>P <0>

Dorothy

Toto

fond

Adj

AdjP

12. H&K quote: "We will disregard the case of ditransitive (3-place, triadic)
predicates, though there are presumably some analogs to verbs like "give" and

"introduce" in other syntactic categories."

It's worth noting that nothing in this system nor the system before predicts

the observed limitation of natural languages to predicates of no more than
triadicity -- there are no natural language predicates that take 4 arguments
necesarily. This restriction could possibly be of two types: it could be a by-

product of the syntactic system, or it could be a processing problem -- human
brains can't deal with more than 3 arguments. In fact, the former seems more
likely than the latter, because we have no problem processing sentences like the

following:

13. Dorothy sold the ruby slippers to Glenda for $1,000,000.

It'd be hard to imagine that there's some problem with making that "for
$1,000,000" argument mandatory instead of optional. Also, the fact that I

personally can't think of any triadic adjectives, nouns or prepositions makes me
suspect that it's a by-product of the syntactic system -- there's something special
about verbs that produces the possibility of an extra argument. (X-bar syntax

means that you can only have 2 arguments in your immediate projection -- what if

verbs have an extra head that allows them to take another argument?)

3 Restrictive modifiers.

14. (a) PP as an argument of an NP
a part of Europe

(b) PP as a restrictive modifier
a city in Texas

(c) PP as a non-restrictive modifier

Susan, from Nebraska

We won't worry about nonrestrictive modifiers; they're parenthetical comments

the speaker makes in the process of asserting a separate proposition. H&K give as
an example "It's suprising that Susan (from Nebraska) finds it cold in here."

Restrictive modifiers, on the other hand, we will worry about. Let's look at the
tree for "a city in Texas."

15.

in Texas

NP

P

PP

NP

N

NP

a

city

<e,t>

<e,<e,t> <e>

<e,t>

<0> <?>

<?>

The problem is, how to compose the "city" node and the "PP" node, both of which

are of type <e,t>, to get a denotation for the whole NP?

First, we can figure out what we want the denotation of the whole NP to

be from looking at its behavior in copular sentences:

16. (a) Lubbock is [a city in Texas.]

(b) I consider Lubbock [a city in Texas].

Here, we can see that the denotation of the whole NP also has to be a function

from individuals to truth values, a function of type <e,t>. This makes sense, if we
consider our intuitions about what "a city in Texas" denotes. "city", in our
predicate calculus, denoted the set of cities, and "city in Texas" still denotes a set -

- the set of cities in Texas, a subset of the set of cities, and a subset of the set of
things in Texas: the intersection of the two sets.

17. Set-theoretic representations of "city in Texas":

the set of
cities

the set of
cities in Texas

(a)

(b)

the set of
cities

the set of
things in Texas

the set of
cities in Texas

So we want our NP node to denote the characteristic function of the set of cities in
Texas. How can we acheive this?

4 First approach: new composition rule

Our current rule for composing the meanings of branching nodes, functional

application, can't apply in this case. Neither of the two sister nodes (N, PP) are of
an appropriate type to take the other as an argument, and functional application
cannot apply. When functional application can't apply, we could try a different

way of composing these two elements. They call it "Predicate Modification":

18. Predicate Modification (PM)

If α is a branching node, {β, γ} the set of α's daughters, and [[β]] and [[γ]]

are both of type <e,t>, then [[α]] = [λx ∈ De . [[β]](x)=[[γ]](x)=1]

This does exactly what we want: it's the function that's true of all entities of which
both its daughters are true. (Note this is exactly like the way that "and" functions
to intersect predicates that we defined earlier.)

This will work not only for PP modifiers of nouns, but also adjectival
modifiers or any number of stacked modfiers. H&K give the example sentence in
19:

19. Kaline is a gray cat in Texas fond of Joe.

AdjP

Adj

gray

N

cat
in Texas

fond

of Joe
PP P

NP

NP

P

PP

N'
AdjP

Adj
N'

N'

a

NP

<e,t>

<e,<e,t>>

<e,<e,t>>

<0>

<0>

<e>

<e>

<e,t>

<e,t>

<e,t>

<e,t>

<e,t>

<e,t>

<e,t>

<e>

PM

PM

PM

Now, if you're a syntactician, you'll notice that the syntactic rules have a
lot to do with the legitimate shape structure, and the types of the elements
involved don't have so much to do with it. Before, we had a nice neat system:

predicates were of some type that took arguments, and arguments were of type
<e>. We might have thought that we could get away with doing away with
category labels altogether: if syntactic composition was functional application, we

only had one legitimate way of putting together predicates with their arguments.

But now we've got a rule that takes things of type <e,t> and combines them with
other things of type <e,t>, irrespective of whether those things are nouns,
adjectives, verbs, or whatever. Nothing about this structure says that the sentence

"Kaline is a smoke in Texas cat fond of Joe" is ill-formed; we could make a
binary-branching structure for that sentence that would get a perfectly legitimate
interpretation. That sort of problem must, then, be syntactic, not semantic.

Spoiler: we're going to adopt this approach in the end. But first, we're
going to consider another possible approach and see what it might entail, and

some arguments pro and con. This will give you the feel for the kind of proposal
that semanticists make and the kind of argumentation that they employ, as well as
the (correct) impression that there's a lot more to say about modification.

5 Second approach:
modification as functional application and type-shifting

Let's look at a modification tree again, and consider our problem from another
angle:

20.

N

NP

<e,t>

<0> <?>

<?>

AdjP

gray
cat

a

AdjP<e,t>

N'

What if we insisted that "gray" and "cat" had to combine by functional
application? One would have to be able to take the other as its argument. Let's say
that we want the modifier to take the N as its argument. (Why should we do it this

way as opposed to the other way? We'll answer this in a second, considering the

case of stacked modifiers). We know we want the whole NP to be of type <e,t>.

So gray will have to denote a function that takes a function of type <e,t> as its
argument, and returns a function of type <e,t>. That is, it'll have to be a function
of the type in 21a, with a meaning like that in 21b:

21. (a) <<e,t>,<e,t>>
(b) [[gray]] = [λf∈D<e,t> . [λx∈D<e> . f(x) =1 and x is gray]]

This'll give us the correct denotations, if we look at the way the tree looks:

22.

N

NP

<e,t>

<0>

AdjP

gray
cat

a

AdjP

<e,t>N'

<<e,t>,<e,t>>

<e,t>

What about a diadic modifier, like the preposition in? Let's look at the tree for

that:

23.

in Texas

NP

P

PP

NP

N

NP

a

city

<e>

<e,t>

<0> <e,t>

<e,t>

<?>

<?>

Now, in is going to have to be a function that takes individuals and returns
a function that takes functions from individuals to truth values and returns a

function from individuals to truth values. It's going to have to have the type in 24:

24. (a) <e, <<e,t>, <e,t>> >

(b)

in Texas

NP

P

PP

NP

N

NP

a

city

<e>

<e,t>

<0> <e,t>

<e,t>

<e,<<e,t>,<e,t>>>s

<<e,t>,<e,t>>

(c) [[in]] = [λx∈ De . [λf ∈ D<e,t> . [λy ∈ De . f(y)=1 and y is in x]]]

In this tree, f(y) =1 iff y is a city, so we have derived the correct truth conditions:
"a a city in Texas" is a function that takes an argument (y) and returns the truth

value 1 iff y is a city and y is in x, x=Texas. So if we can give modifiers like "in
Texas" and "gray" appropriate types, we can retain the idea that all syntactic
composition is functional application.

The trick is, though, that the types in 24a and 21a can't always be the types
that gray and in have. Remember the original sentences?

25. (a) Kaline is gray.
(b) Lubbock is in Texas.

We're not about to change our denotations for proper names. Those are about the
only things that we have a solid idea of what they mean. There's two possible

ways we could go. We could revise the denotation for "be". Consider the

following:

26.

S

PP

P NP

VP

V

NP

is

in

Lubbock

Texas

<e> <e,t>

<t>

<?>

<e,<<e,t>,<e,t>>>

<e>

<<e,t>,<e,t>>

The V and the PP have to combine via FA. Either the V has to take the PP as its

argument, and return a function of type <e,t>, or the PP has to take the V as its
argument, and return a function of type <e,t>. So the V (and hence is) will have
to be either of two types:

27. (a) <<<e,t>,<e,t>>,<e,t>>
(b) <e,t>

Let's see what definition we'd need to make the first alternative work,
where is takes the PP as its argument (half of H&K's 2nd exercise p 67):

28. [[is]] = [λf ∈ D<<e,t>,<e,t>> . [λx ∈ D<e> . f(g)(x)=1

when g = [λy∈D<e> . y exists]]

Other half of 2nd exercise: homework?

However, there's a number of problems with this proposal:

29. Problems with adapting the copula to combine with functions of type
<<e,t>,<e,t>> :

(a) The copula will no longer combine with our type for nouns:
#Kaline is a cat.

(b) There are languages without a copula in this type of predication.

So gray and in have to have the <e,t> and <e,<e,t>> denotations that we already

gave them. How do we reconcile this difference in their types for modification
and predication?

Well, we could adopt the position that they've got both types. That is, anything of
type <e,t> also has a type <<e,t>,<e,t>>, and anything of type <e,<e,t>> has a
type <e,<<e,t>,<e,t>>. If we restrict this type-shifting to things labeled "Adj" and

"P", then we also have a principled reason why Ns and Vs can't occur as modifiers
without some special adaptation.

Next class: more on deciding between PM and type-shifting: nonintersective
adjectives (small, former).

 Distributivity and Conjunction

 Dick Oehrle

 University of Arizona Linguistics Colloquium
 22 October 1999

 2:00, Douglass 101

In arithmetic, multiplication is said to distribute over addition in virtue
of the identity

 a x (b + c) = (a x b) + (a x c).

The terminology is in fact applicable in a much wider range of settings.
Thus, the set-theoretic operations of union (`\cup') and intersection
(`\cap') distribute over each other, in view of the laws

 A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
 A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

In this paper, we investigate the distributivity of the complement of a con-
joined expression over the conjunction.

 As an illustration, consider the sentence

 Smith gave Jones an LP and Peters a CD.

Abstractly, we may regard such a sentence as the result of conjoining `Jones

an LP' with `Peters a CD' and combining the result of this conjunction with
`Smith gave'. Calling the first of these operations conj and the second app,
we can represent the sentence above as

 (Smith gave) app ((Jones an LP) conj (Peters a CD)).

We can now ask whether app distributes over conj, a question that can be
interpreted either with respect to syntactic well-formedness or to semantic
interpretation. On the syntactic interpretation, we are interested in whether

the syntactic well-formedness of undistributed sentences (such as Smith gave
Jones an LP and Peters a CD) entails the syntactic well-formedness of the
correponding distributed sentences (such as Smith gave Jones an LP and

Smith gave Peters a CD). On the semantic interpretation, we are interested
in whether the semantic properties of undistributed sentences (such as their
truth-conditions) are identifiable with the corresponding properties of the

corresponding distributed sentences.

 In the paper, we show that distributivity of app over conj does not

hold in general, either on the syntactic interpretation or on the semantic

interpretation. For example, on the semantic side, if Smith owes Jones a
nickel or Peters a dime, it need not be true that Smith owes Jones a nickel
or Smith owes Peters a dime. And pairs such as the following illustrate the

failure of syntactic distributivity:

 Smith admires Jones's initiative and that she always turns chance to advantage.

 . . . ?* Smith admires that she always turns chance to advantage.

 As a consequence, theories of conjunction which entail or depend on

distributivity of either kind cannot be maintained. Examples of theories of
this defective kind will be discussed. Finally, we will describe a theory of
conjunction which does not entail or depend on either syntactic or semantic

distributivity and is nevertheless able to support a broad range of properties
of conjunction, particularly `non-constituent conjunction' and conjunction
of unlike categories.

