Infant artificial language learning and language acquisition

Rebecca L. Gómez and LouAnn Gerken

The rapidity with which children acquire language is one of the mysteries of human cognition. A view held widely for the past 30 years is that children master language by means of a language-specific learning device. An earlier proposal, which has generated renewed interest, is that children make use of domain-general, associative learning mechanisms. However, our current lack of knowledge of the actual learning mechanisms involved during infancy makes it difficult to determine the relative contributions of innate and acquired knowledge. A recent approach to studying this problem exposes infants to artificial languages and assesses the resulting learning. In this article, we review studies using this paradigm that have led to a number of exciting discoveries regarding the learning mechanisms available during infancy. These studies raise important issues with respect to whether such mechanisms are general or specific to language, the extent to which they reflect statistical learning versus symbol manipulation, and the extent to which such mechanisms change with development. The fine-grained characterizations of infant learning mechanisms that this approach permits should result in a better understanding of the relative contributions of, and the dynamic between, innate and learned factors in language acquisition.

Language acquisition is one of the most complex learning tasks imaginable. The daunting nature of the undertaking arises from conflicting pressures to generalize beyond the stimuli encountered without generalizing too far. For example, it has been observed that children never erroneously transform a statement like ‘The man who is tall is Sam’ into the question ‘Is the man who tall is Sam?’ (by moving the subordinate clause verb rather than the main verb to the front of the sentence). The lack of such errors has been taken as evidence that children never consider rules based solely on linear order in sentences, such as ‘move the first verb to the front of the sentence’. The computational and logical difficulties raised by these conflicting pressures have caused many researchers to conclude that language is not learnable by an unspecialized learning device and, although infants appear to be sensitive to these features of sentences and clauses, we do not know whether they are responding to pauses, reduced stress, frequently occurring words or some combination of the above. Language researchers have thus turned to artificial languages as a means of obtaining better control over the input to which learners are exposed. Artificial languages can be designed to offer the learner a range of learning opportunities that can be systematically manipulated in a laboratory setting to detect underlying learning mechanisms. A paradigm that has been particularly helpful in exploring innate learning mechanisms is the artificial language learning paradigm.

R.L. Gómez is at the Department of Psychology, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
Tel: +1 410 516 4018
Fax: +1 410 516 4478
E-mail: gomez@jhu.edu

L. Gerken is at the Department of Speech and Hearing Sciences, University of Arizona, Tucson, AZ 85721, USA.

Review

Chun – Contextual cueing

Language acquisition is one of the most complex learning tasks imaginable. The daunting nature of the undertaking arises from conflicting pressures to generalize beyond the stimuli encountered without generalizing too far. For example, it has been observed that children never erroneously transform a statement like ‘The man who is tall is Sam’ into the question ‘Is the man who tall is Sam?’ (by moving the subordinate clause verb rather than the main verb to the front of the sentence). The lack of such errors has been taken as evidence that children never consider rules based solely on linear order in sentences, such as ‘move the first verb to the front of the sentence’. The computational and logical difficulties raised by these conflicting pressures have caused many researchers to conclude that language is not learnable by an unspecialized learning device and, although infants appear to be sensitive to these features of sentences and clauses, we do not know whether they are responding to pauses, reduced stress, frequently occurring words or some combination of the above. Language researchers have thus turned to artificial languages as a means of obtaining better control over the input to which learners are exposed. Artificial languages can be designed to offer the learner a range of learning opportunities that can be systematically manipulated in a laboratory setting to detect underlying learning mechanisms. A paradigm that has been particularly helpful in exploring innate learning mechanisms is the artificial language learning paradigm.

Infant artificial language learning and language acquisition

Rebecca L. Gómez and LouAnn Gerken

The rapidity with which children acquire language is one of the mysteries of human cognition. A view held widely for the past 30 years is that children master language by means of a language-specific learning device. An earlier proposal, which has generated renewed interest, is that children make use of domain-general, associative learning mechanisms. However, our current lack of knowledge of the actual learning mechanisms involved during infancy makes it difficult to determine the relative contributions of innate and acquired knowledge. A recent approach to studying this problem exposes infants to artificial languages and assesses the resulting learning. In this article, we review studies using this paradigm that have led to a number of exciting discoveries regarding the learning mechanisms available during infancy. These studies raise important issues with respect to whether such mechanisms are general or specific to language, the extent to which they reflect statistical learning versus symbol manipulation, and the extent to which such mechanisms change with development. The fine-grained characterizations of infant learning mechanisms that this approach permits should result in a better understanding of the relative contributions of, and the dynamic between, innate and learned factors in language acquisition.
Box 1. Learning in utero

Artificial-language studies with infants demonstrate the presence of remarkably sophisticated learning abilities by seven, eight and 12 months of age (Ref. d). Such findings inevitably raise questions regarding how early learning might occur. In fact, the possibility that learning begins in utero. One of the earliest indications was the finding that newborns prefer their mother’s voice to that of another female (Ref. n). Numerous studies indicate that infants from their native language from sentences from another language. Passages read in French produced higher sucking rates (as measured by an operant sucking procedure) in French newborns than passages read in Russian (Ref. f). Presumably, such preferences are shaped by past experience with maternal speech. Immediate recordings indicate that the low-frequency components of maternal speech, including its prosodic (or rhythmic) qualities, are audible in utero and late-term fetuses consistently respond to sound (Ref. g), raising the possibility that learning might begin sometime during the last trimester of gestation.

Additional evidence for learning in utero comes from experiments showing that newborns discriminate a passage read aloud by their mothers during the last six weeks of pregnancy from an unfamiliar one (Ref. e). Two-day-old newborns were tested, using an operant learning procedure, to see whether the familiar passage would be more reinforcing than an unfamiliar one. The familiar passage was indeed more reinforcing, even when read in another woman’s voice, suggesting that infants had learned certain features of their training passage in utero (possibly involving the rhythmic qualities of the infant’s particular training story). The fact that newborns made the discrimination even when passages were read in another woman’s voice, demonstrates that they had acquired information specific to the passage, rather than only to their mother’s voice. Further evidence for learning in utero comes from a study testing learning in 37-week-old fetuses (Ref. j). Mothers repeatedly recited one of two rhymes out loud, once a day over a four-week period. At the end of this time their fetuses were stimulated with recordings of both the familiar and unfamiliar rhymes. The familiar rhyme consistently elicited a decrease in fetal heart rate whereas the unfamiliar one did not, suggesting that the fetuses discriminated the two.

Although these findings are extraordinary, there are more than likely to be limitations on such learning. For instance, as noted above, the sound transmitted to the fetus is primarily of very low frequency, and hence lacks the type of detail needed for making fine-grained acoustic distinctions. Furthermore, once born, infants do not begin showing preferences for more complex information, having to do with constraints on legal sound patterns in their native language or case marking plural and clausal units, until sometime between six and nine months of age (Ref. k–n), suggesting that fetuses could not be acquiring information at the level of detail. However, the fact that learning begins in early (even if in a very rudimentary way) demonstrates that the sensitivities observed at birth are likely to result from a gradual accumulation of knowledge as from the presence of innate constraints, making it all the more important to obtain a detailed understanding of the developmental trajectories of the mechanisms involved.

References

- Karmiloff-Smith, A.P. et al. (1992) Developmental cardiac responsiveness to acoustical stimulation in the near term fetuses. Q. J. Exp. Physiol. 78, 159–175
- DeCasper, A.J. and Spence, M.J. (1986) Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behav. Dev. 9, 133–150
- Iacoboni, F. et al. (1983) Preference for the predominant stress pattern of English words. Child Dev. 64, 675–687
- Reference
Box 2. Nativist and empiricist views of language acquisition

Although the position of the present work remains an impressionistic dilemma as framed, increasing evidence suggests that the empirical problem faced by children is not so impenetrable. It is important to point out that although these views differ in their approach to the language problem, each role acknowledges the contribution of the other language-specific parameters (Ref. 8).

Central to this view is the argument from the poverty of the stimulus, that linguistic input is too impoverished and learning mechanisms too weak to otherwise explain how young children converge on language (where convergence on a universal grammar is thought to underly linguistic productivity). Convergence on a initial grammar might thus be seen as a result of minimizing the number of constraints that are imposed on the learner. For example, as noted in the introduction, it is assumed that children never consider rules based solely on linear order, such as ‘moves the first verb to the front of the sentence’, because they never erroneously transform sentences like ‘The man ate a pie into an ungrammatical question like ‘Is the man who ate a pie?’. Given that children hear many simple instances that might lead them to form a rule based on linear order (e.g. ‘John ate. John ate?’), how do we explain the lack of errors in sentences with a subordinate clause (and hence two verbs)? Given the conflicting evidence available in the environment, a classic assumptive to assume children are innately constrained to consider the hierarchic organization (or structural dependence) of syntactic phrases as opposed to linear word ordering. Arguments such as these gain considerable momentum from Gold’s proof showing that certain classes of languages are not learnable without some kind of constraint on the hypotheses learners are willing to entertain (Ref. 1). An alternative, empiricist view sees the learner as a blank slate, equipped with general associative learning mechanisms (Ref. 5–7). According to this view, learning might be constrained by human information-processing abilities, but is not limited to the specific domain of language. Although the nativist view has dominated for many years, recent advances in cognitive science suggest that the assumptions underlying this view might have been overly restrictive (Ref. 5–7). First, far from being impoverished, the linguistic input is rich in structural regularities (Ref. 8–10). Such regularities aid learning in humans (Ref. 5–7) and in neural networks. Second, neural networks have far outstripped early conceptional views (Ref. 11) of associative learning, especially with respect to their ability to capture key aspects of linguistic behavior (Ref. 12–14). Where these models differ from nativist proposals is in their emphasis on learning as a stochastic process over distributed input rather than on involving manipulation of discrete symbols. For example, Rohde and Flament have recently demonstrated how such an architecture learns without explicit negative feedback (Ref. 15). The fact that human infants also capitalize on structural regularities (Ref. 16) suggests a certain degree of overlap at least some of the mechanisms involved. Researchers have also begun to argue that although Gold’s proof applies under the assumption that all learners converge on one true target, it does not apply under the assumption that the target is mechanically defined (Ref. 17). Thus, consistent cue is that syllables within words usually have a higher transitional probability than syllables spanning words (a ‘transitional probability’, the conditional probability of Y given X, is calculated by normalizing the co-occurrence frequency of X and Y by the frequency of X).
Saffran, Ados, and Newport investigated whether infants could learn the grammatical probability of a word in running speech. In their study, eight-month-old infants listened to two minutes of continuous speech consisting of four tri-syllabic nonsense words stringed together in random order (e.g. bidekubadongobalonekubadongotongadot). Infants were then tested to see whether they would discriminate two of the familiarized words (e.g. tiospi and pelshu) from two non-words (alpehia and sinda). Infants’ listening preferences for different stimuli were measured using the head-turn preference procedure. Stimulation in this procedure are presented audially from the infant’s left or right side. The amount of time the infant orienting toward the source of sound is taken as the dependent measure. Words and non-words were drawn from the same syllable set, but differed in terms of the transitional probabilities between syllable pairs (though words having mean transitional probabilities of 1 and non-words having mean transitional probabilities of 0). The only cue to whether or not a stimulus was a word was the difference in transitional probabilities, and so discrimination would demonstrate sensitivity to such probabilities. Infants, in fact, showed differential attention to familiar and unfamiliar syllable combinations, suggesting the presence of a fairly sophisticated statistical learning mechanism. Later studies demonstrated that infants were also sensitive to transitional probabilities over tone sequences, suggesting that this learning mechanism was more general than one dedicated solely to processing linguistic stimuli. Whether infants will go on to treat constituents extracted from speech as lexical items it is still open, but it is certainly a question that can be investigated empirically.

Words in sequence
In addition to segmenting words in running speech, learners must also acquire the legal ordering of words in sentences. To determine whether infants could learn ‘grammatical’ word order, Gómez and Gerken exposed 12-month-olds to a set of strings produced by one of two grammars (see Fig. 1). Note that although word order is constrained by these grammars, there is still considerable variability in terms of the orderings of words in sentences. For example, in Grammar 1, PEL can occur in first position (PEL-TAM-RUD), second position (VOT-PEL-JIC-RUD-TAM), second and third position (VOT-PEL-PEL-JIC-JIC-RUD-TAM), or not at all (e.g. VOT-JIC-RUD-TAM). Similar IJC sequences after either VOT, PEL, or TAM, but in position varies as a function of whether the sentence begins with PEL or VOT, whether PEL occurs after TAM or after VOT or after TAM, and whether PEL repeats in the string. After brief exposure to a subset of strings in their training grammar (between 50 and 127 seconds), infants were given a short play break, and then were tested to see if they would discriminate new strings from the two grammars. Importantly, both grammars began and ended with the same words and contained the same vocabulary. They differed, however, in terms of the ordering of word pairs. For instance, the transition TAM-JIC found in Grammar 1 never occurred in Grammar 2. Likewise, VOT-RUD found in Grammar 2 never occurred in Grammar 1. Infants listened longer to new strings from their training grammar than to strings from the other grammar, regardless of which grammar they heard during training. Although the constraints placed on word ordering were the same during training and test, infants were never tested on the exact strings encountered during training. This demonstrated that learning was not confined to memory for particular strings, but rather generalized to novel strings with familiar co-occurrence patterns. This learning is all the
more remarkable given that it occurred after less than two
minutes exposure and was retained over a short delay.

It is likely that the statistical learning mechanism docu-
mented by Saffran and colleagues12 also explains the learning
in these studies. Importantly however, learning is not so static
as to prohibit recognition of grammatical word combinations
in novel sentences.

Words in abstract patterns
Although sensitivity to word order is necessary for tracking
sequential information in sentences, learners must ultimately
abstract beyond the ordering of specific words. It is with this
aim that researchers have begun investigating early abstraction
abilities. For instance, Gómez and Gerken11 exposed infants to
a subset of strings produced by one of the two grammars
drawn in Fig. 1. Instead of using the vocabulary depicted in
the figure, the training set consisted of JED, FIM, TUP, DAK
and SOG. The test strings, however, were constructed using
the vocabulary VOT, PEL, JIC, RUD and TAM. To give an
example, infants trained on Grammar 1 heard strings like
FIM-SOG-FIM-FIM-TUP and were tested on new strings
like VOT-PEL-PEL-JIC. Thus, although constraints on
grammatical word ordering remained constant, vocabulary did
not. Critically, because test strings were instantiated in new
vocabulary, learners could not distinguish the two grammars
based on transitional probabilities between remembered word
pairs. This task was all the more difficult because the subset of
strings used during training did not overlap with the subset of
grammatical strings used at test. That is, none of the underly-
ing strings occurred in both training and at test. Infants discrimi-
nated grammatical from ungrammatical strings despite the
change in vocabulary and despite the fact that none of the un-
derlying test strings were encountered during training, sug-
gesting that they had abstracted some aspect of grammatical
structure above and beyond pairs of specific elements. This
ability does not appear to be domain specific, at least with
respect to adult learners. Adults trained on visually presents
consonant and symbol strings generate to auditory
presented tone and CVC sequences (and vice versa)17,18. It re-
mains to be seen whether such learning will prove to be
domain general for younger learners.

In a similar series of studies, Marcus and colleagues14
exposed seven-month-olds to three minute speech samples of
strings with ABA (a-d-e-a and a-d-e-d) or ABB (a-d-e-d
and a-d-e-d) word patterns. In these studies the underlying
pattern was the same for training and for test, however, the
vocabulary was different. Infants were subsequently able to
discriminate strings with the training pattern from those with
a different pattern (e.g. ka-po-ke versus ba-po-po), despite
the change in vocabulary. These results were important for
demonstrating that younger infants can also abstract be-
ond specific word order. Marcus et al. further interpreted
these findings as evidence that infants are acquiring algebra-
like rules (involving substitution of arbitrary elements in ab-
stract variables; an example from language would be the
substitution of any plural noun phrase for The three daxels
in the sentence The three daxels entered through the path5).
Marcus has argued that systems sensitive only to statistical
regularities (namely connectionist architectures) are, in prin-
ciple, incapable of such abstraction15,16. Arguments against
this interpretation (as well as several demonstrations in favor
of a statistical learning account of such abstraction) have been
mounted by a number of researchers. Thus, although the
issue of whether infants are abstracting by means of rules or
statistical regularities is still open to debate17–33, there is no
doubt that infants can generalize beyond specific word order.
Having demonstrated such abstraction, we must next ask how
central it is to acquiring the syntax of one’s native language.

Limitations of pattern-based representations
The infant abstraction abilities documented thus far have in
common that grammatical and ungrammatical strings were
distinguishable by differences in patterns of identical elements
(e.g. ABB, ABA, ABCA and ABAAC)11,14. No doubt identity
is salient for learners. When absent, infants and adults no
longer generalize, providing support for the hypothesis that
identity underlies this abstraction4,11. Gómez et al.12 exposed
learners to a grammar containing strings with one repeating
element versus a grammar with no identical elements. Learners
acquired robust knowledge of sequential dependencies (as
reflected in their ability to discriminate grammatical from ungrammatical strings in their training vocabulary). However, such knowledge did not factor into their ability to generalize to new vocabulary. Abstraction beyond specific word order only occurred for learners trained on the grammar with repeating elements. Such abstraction could be limited, however, with respect to acquiring syntax. The key to understanding this point lies in a contrast between what we will call pattern-based and category-based abstraction.

Pattern-based abstraction can be described in terms of relational operations (e.g. identity, greater-than or less-than) over physical stimuli in sequence. For example, recognizing ko-po-ko and ko-go-po as instances of the pattern ABA entails noting that the first and last syllables in sequence are physically identical. It is perhaps easier to understand this distinction in the context of classic studies from the animal literature. For example, chimpanzees, rats and chicks are able to evaluate relational patterns in training stimuli (e.g. luminance, > luminance, ≥ luminance) and generalize to untrained stimuli. Furthermore, starlings trained to respond to ascending tone sequences generalize to new ascending sequences created by various transformations of the training stimuli (where an ascending sequence can be described by a series of relations in which the pitch of sequence element n > 1 is greater than element n - 1). In each of these examples, a relation is abstracted by comparing the perceptual characteristics of each element in the physical array to those of the other elements. In this way, such relations are perceptually bound.

Category-based generalization, by contrast, involves operations over abstract rather than perceptually bound variables. Compare the pattern-based representation ABA with the category-based representation Noun-Verb-Noun. Although superficially similar, these examples differ along a critical dimension. Recognizing ABA and Noun-Verb-Noun both involve identity, but in the former case, the relation is perceptually bound, whereas in the latter the identity relation holds over abstract categories and thus is at least one step removed from physical identity. That is, abstracting the pattern ABA from ko-po-ko involves noting that the first and third elements in a sequence are physically identical. With category-based generalization, however, learners must identify the first and third elements as members of the abstract category 'noun'. These determinations cannot be based on physical dissimilarities between category members such as belonging to a particular category has immediate access to the ability to abstract over categories is fundamental to linguistic productivity. A learner who identifies a novel word as belonging to a particular category has immediate access to all of the rules involving that category. Even very young learners are privy to such information. Pre-school children seeing and hearing 'Here is a wug. Now there are two of them. and asked to complete the sentence 'There are two _____' and respond with the answer 'wugs' has focused on the problem of how learners acquire relations between grammatical pairs. For example, English-speaking children need to learn that the determiners the and a precede nouns and not verbs, whereas auxiliaries like see and is precede verbs, but not nouns. This problem can be conceptualized in terms of filling in the cells of matrices (such as the ones shown in Fig. 2), where learners must acquire the knowledge that MN and PQ are legal sentences of a language, but MQ and PN are not. In these studies, learners are exposed to most, but not all, grammatical pairings during training to see whether they will generalize to new grammatical pairs at test. If learners acquire the categories M, N, P and Q, and learn the dependencies between them, then they should distinguish a new grammatical pair such as M,N, from the ungrammatical pair M,N.
Box 3. Systematically related cues and learning

Research on category-based abstraction has been critical for demonstrating the importance of systematically related cues in abstraction of language-like categories (Refs a–c). However, it should come as no surprise that learners rely heavily on correlated syntactic structure, even for the members not marked with cues to class membership (e.g. members of N began with /N/ and Q categories with salient word beginnings and endings (Ref. d)). This is consistent with findings showing that learners are far more successful at differentiating syntactic categories, and subsequently learning the relationships between them, when some subset of category members are distinguished by perceptual and conceptual marking of syntactic categories (Ref. e). This involves breaking the input into smaller, more manageable chunks, and providing a potentially rich source of information for learners (Ref. f). In English, for example, nouns tend to be preceded by frequently occurring determinants during a similar voiced sound (e.g. what in the end of a sentence). Verbs also tend to have more syllables than nouns, as are used even by 4-year-olds (Ref. g). Although such regularities do not predict systematic structure for every sentence in the English language (Ref. h–j), they might occur with high probability, or in concert with other types of cues (e.g. semantic), to provide learners with a ‘toe-hold’ on the acquisition problem, both in terms of breaking the input into smaller, more manageable chunks, and in terms of clarifying those chunks into meaningful categories. A problem for a view emphasizing the role of systematic cues in language acquisition is explaining how learners acquire the cues in direct violation of cues. Another problem (raised by the structure-dependence example used in the introduction) is accounting for performance for which the relevant regularities do not exist. However, an explanation of language acquisition emphasizing the psychological salience of systematically related cues is not meant to supersede all other accounts of how learners acquire language. Furthermore, there is no reason why mechanisms sensitive to statistical regularities cannot act in combination with other sources of information (Ref. k). Rather, the challenge for language researchers is in determining the limits of such learning with respect to acquiring language.

References

N and Q categories with salient word beginnings and endings (e.g. members of N began with /N/ and Q words with /Q/). Once categorized, N and Q words are more effective at promoting hierarchical packaging of word strings in an artificial grammar when they occur consistently with the systematically related features. These features are then used to group M- and P-Elements. Once categorized, learners can use the knowledge that M1 pairs with N1 to infer that it also pairs with N2 (Ref. 40). The results of these studies are instructive in more than one way. First, they demonstrate that humans are not unconstrained learners. People simply do not abstract arbitrary dependencies. Abstraction results only when there is sufficient evidence to distinguish the categories in question. This should not be surprising given previous work on the importance of correlated cues in language learning (Box 3). However, this fact about human learning is also important for circumventing the nature of the acquisition mechanisms proposed. For example, overly powerful models have assumed that learning involves abstraction of arbitrary structure(13), when in fact many of the categories found in natural language (such as gender, declension and conjugation classes) are rich in systematic cues to class membership(14). For example, in Spanish, feminine nouns often end in -a and masculine nouns in -o. In Hebrew, nouns ending in -a and -o are often feminine.
Now that we have some understanding of the requirements for inducing category-based abstraction in adults, the next step will be to begin investigating how younger learners master such abstraction. Other important issues have to do with whether such learning is rule based or associative in nature and whether learners can induce category structure based on a more limited set of examples (e.g., exhibiting characteristics found in child-directed speech). We are currently investigating these issues in our joint laboratories with infants and adults.

Conclusion and implications

We have reviewed a number of studies investigating the learning abilities exhibited by infants and adults. The results suggest that infants are equipped with remarkable abilities for parsing linguistic input. They are able to identify word-like constituents in fluent speech based on predictive syllable relationships. They learn constraints on grammatical word order. They also exhibit rudimentary abstraction abilities, as reflected in their recognition of familiar patterns in novel vocabulary. Finally, they must ultimately discover that the ordering of words in sentences is determined at a more abstract level by dependencies among syntactic categories. We have some understanding of how adults acquire such dependencies, monitoring similar research with younger learners.

How does our growing understanding of infant learning abilities bear on the highly constrained language learner described in the introduction? We can identify at least three ways. First, all of the artificial-language-learning studies discussed have examined infants’ sensitivity to linguistic form in the absence of semantic content. In so far as these studies are tapping sensitivities used in real-language acquisition, they challenge many accounts in which language development is driven by a mapping between meaning and form. This is not to say that learners do not ultimately need to map the syntactic forms they encode during infancy onto meaning. Obviously they do. However, the fact that infants are able to acquire certain aspects of form prior to acquiring the meaning of those forms changes the nature of the language acquisition problem in a fundamental way.

A second implication of the research on infant artificial-language learning concerns the specificity of the constraints on the learner. On many accounts, these constraints have been construed as being language-specific, such that for every aspect of language to be acquired, the child is born with a specific constraint or parameter that guides him/her to the correct representation. Data showing that infants can use transitional probabilities to segment grammatical tone sequences contrasts with this view, suggesting that they apply statistical learning to linguistic and non-linguistic stimuli alike. The application of statistical sensitivity to the problem of word segmentation is admirably far from the constraints discussed by linguistic nativists (involving such language-specific notions as whether or not declarative sentences in a particular language must have an overt subject). Nevertheless, the hypothesis that language (although a specialized human cognitive domain), can be acquired via general-purpose learning mechanisms, is one likely to be investigated with increasing vigor over the next decade.

A third implication of both the infant artificial-language-learning studies reviewed here and the myriad studies of infant language perception preceding them concerns the relevance of children’s early utterances as evidence for theories of language acquisition. One of the key observations of linguistic nativism involves errors that children do not make. As noted earlier, children never erroneously transform a statement like ‘The man who is tall is Sam’ into a question like ‘Is the man who tall is Sam?’ The lack of such errors, along with logical arguments concerning the poverty of the stimulus, have been taken as evidence that children never consider rules based solely on linear order in sentences. Although researchers have begun to address the question of how a statistical learner might begin to negotiate impoverished input (Box 2), it is equally important to note that if the studies of infants’ early linguistic abilities tell us anything, it is that they have become sensitive to many aspects of linguistic form a year or more before they ever begin to produce multiword speech. This is not to say that all of language is acquired by the age of 12 months. However, if infant language-perception studies have one theme, it is in demonstrating the extremely complex (and often contrasting) relationship between aspects of their native language infants and young children have actually mastered and those they actually produce. Thus, we must exercise caution in interpreting children’s early utterances as evidence for or against the linguistic representations they do and do not entertain.

A final comment is in order. Given the vast differences in artificial grammars and natural language, how do we ensure that the learning observed is representative of language learning in the real world? First, in using this approach it is important to design experiments capturing key linguistic phenomena. If we can isolate a phenomenon of interest experimentally, we can go on to test it using a wide range of manipulations, where, presumably, such manipulations are driven by our knowledge of natural language acquisition. For instance, the finding that 18-month-olds, but not 15-month-olds track grammatical tone sequences separated by one to three intervening syllables, suggests that we should see the same pattern with an artificial grammar designed to investigate such learning. Indeed, studies in our joint laboratories show that we do. Another approach, currently being investigated by Suffian and colleagues, is to test whether the output of statistical learning can be used in input to natural language. Ultimately, however, with any scientific endeavor, the proof of this approach will depend on the extent to which it generates new ways of understanding the mechanisms involved in natural language acquisition. In real promise lies in the precision it affords with respect to investigating infant learning.

Outstanding questions

• Which aspects of language acquisition are acquired and which are innate?
• How much knowledge is built into the initial system?
• What is the dynamic between innate and environmental factors?
• How does this dynamic change over the course of development?
• Do learning mechanisms develop?
• How do domain-general and domain-specific mechanisms factor into language learning?
• Do these mechanisms operate exclusively by means of rules or associations, or do we make use of both symbolic and associative mechanisms?
• To what extent are the mechanisms identified in artificial-language studies the same as those used in acquiring natural language?
Acknowledgements
The preparation of this manuscript was funded by research grants from NSF to K-SC (DOS-9510251) and LAC (SRG-8906412). We thank R. Schwanenflugel, Dr. F. and the anonymous reviewers for helpful comments and suggestions.

References

Erratum

In the Opinion article by M. Tomasello in the April issue of Trends in Cognitive Sciences (Vol. 4, No. 4, pp. 156-163), Table 1 on p. 160 was printed with two errors. In the left-hand column of the table, instead of “Ref. 43” and “Ref. 44” it should read “Lewis and Tomasello (unpublished data)” and “Children and Tomasello (unpublished data),” respectively.

We apologize to the author and to readers for this oversight.

Pil: P51584-66103D001481-9