Forever young:

Inaudible /r/ allophony resists conventionalization

Jeff Mielke, Adam Baker, and Diana Archangeli

University of Arizona

Supported by College of Social and Behavioral Sciences, University of Arizona, and James S. McDonnell Foundation grant #220020045 BBMB

January 5, 2006

- ► American English /ɹ/: a variety perceptually indistinct production strategies (Delattre and Freeman 1968, Tiede et al. 2004).
 - bunched
 - retroflex
 - etc.

▶ Individual speakers employ multiple strategies (e.g., Delattre and Freeman 1968, Ong and Stone 1998, Guenther et al. 1999, Campbell et al. 2004).

- ▶ Individual speakers employ multiple strategies (e.g., Delattre and Freeman 1968, Ong and Stone 1998, Guenther et al. 1999, Campbell et al. 2004).
- ► We present ultrasound data showing that speakers with more than one distinct /ɹ/ production strategy often:
 - use each "allophone" consistently in different contexts
 - do so in the interest of articulatory ease, and
 - differ quite a bit from one another.

/a/ allophony is peculiar because it is unable to reach a stage of conventionalization.

Speaker-specific allophony patterns.

- Speaker-specific allophony patterns.
- Complex allophony patterns:

- Speaker-specific allophony patterns.
- Complex allophony patterns:
 - Different conditioning segments for different syllable positions

- Speaker-specific allophony patterns.
- Complex allophony patterns:
 - Different conditioning segments for different syllable positions
 - Different conditioning consonants for different vowel contexts

- Speaker-specific allophony patterns.
- Complex allophony patterns:
 - Different conditioning segments for different syllable positions
 - ▶ Different conditioning consonants for different vowel contexts
 - Sets of conditioning environments that are not easily defined.

We argue that these facts show that:

 multiple sound patterns can emerge in response to the same phonetic motivation,

- multiple sound patterns can emerge in response to the same phonetic motivation,
- speakers can control complex allophonic rules,

- multiple sound patterns can emerge in response to the same phonetic motivation,
- speakers can control complex allophonic rules,
- the simplification characteristic of many familiar sound patterns appears to be the result of social convergence on a single conventionalized pattern, and

- multiple sound patterns can emerge in response to the same phonetic motivation,
- speakers can control complex allophonic rules,
- the simplification characteristic of many familiar sound patterns appears to be the result of social convergence on a single conventionalized pattern, and
- ▶ this convergence cannot occur here because the difference between allophones is imperceptible.

► This interpretation is consistent with the view that phonetically natural sound patterns and their characteristic properties emerge through the conventionalization of phonetic effects

- ▶ This interpretation is consistent with the view that phonetically natural sound patterns and their characteristic properties emerge through the conventionalization of phonetic effects
- (e.g. (recently) Ohala 1981, 2003, Ladefoged 1984, Labov 1994, 2001, Bybee 1998, Hume and Johnson 2001, Hale 2003, Janda 2003, Janda and Joseph 2003, Kiparsky 2003, Blevins 2004, etc...).

- ▶ This interpretation is consistent with the view that phonetically natural sound patterns and their characteristic properties emerge through the conventionalization of phonetic effects
- (e.g. (recently) Ohala 1981, 2003, Ladefoged 1984, Labov 1994, 2001, Bybee 1998, Hume and Johnson 2001, Hale 2003, Janda 2003, Janda and Joseph 2003, Kiparsky 2003, Blevins 2004, etc...).

- ► This interpretation is consistent with the view that phonetically natural sound patterns and their characteristic properties emerge through the conventionalization of phonetic effects
- (e.g. (recently) Ohala 1981, 2003, Ladefoged 1984, Labov 1994, 2001, Bybee 1998, Hume and Johnson 2001, Hale 2003, Janda 2003, Janda and Joseph 2003, Kiparsky 2003, Blevins 2004, etc...).
- An illustration:

Many possible variants.

Biased toward phonetically natural ones.

Something gets social significance.

Speakers converge and it gets conventionalized.

American English /1/

American English /1/

► Characterized by low F1, F2, and especially F3 (Boyce and Espy-Wilson 1997, Delattre and Freeman 1968, Westbury et al. 1998).

American English /a/

- ► Characterized by low F1, F2, and especially F3 (Boyce and Espy-Wilson 1997, Delattre and Freeman 1968, Westbury et al. 1998).
- Articulatory variability helps achieve acoustic stability (Guenther et al 1999, Boyce and Espy-Wilson, 1997).

The Delattre and Freeman taxonomy:

- Types 2-7 reported for American English (Delattre and Freeman 1968, Tiede et al. 200X).
- ▶ Delattre and Freeman found Types 1 and 8 in British English.

The r-less / J / types (bunched)

_

Northeast American

The dorsal /a/ types (bunched)

Type 3

Classic bunched

Type 4

The blade /a/ types (bunched)

Posterior blade

Type 5

Anterior blade

The retroflex /a/ types

Apical retroflex

Type 7

Classic retroflex

Type 8

Methods overview

- Subjects were recorded producing English words containing / J/ (audio, video, and ultrasound video)
- ► Stimuli were monosyllabic words with /ɹ/ in different syllabic and segmental contexts.
- Produced in the carrier phrase "Please say X again."

Stimuli

Segments:

- Vowels in stimuli were /a o i/.
- ▶ Preceding $/ u / were / p t k f \int \theta / and #.$
- ► Following $/ J / were / p t k f t \int \theta I / and #.$

Words (subject to the existence of words):

- ▶ 3 words for each C₋₋V & V₋₋C context (92)
- ▶ 5 words for each initial & final context (30)
- ▶ 1 word for each C__C context (25) (many gaps)

All words repeated 3 times.

Subjects

- ▶ 32 University of Arizona undergraduates
- ▶ 5 subjects excluded from analysis (4 non-native speakers of American English and 1 who imaged very poorly)
- 27 subjects analyzed

Analysis of tokens

- ▶ 441 tokens (3×147) per subject analyzed:
 - visual inspection of ultrasound images
 - visual inspection of ultrasound video
 - with and without Palatron tongue-palate alignment (Mielke et al. 2004).
- ► Each token labeled according to Delattre and Freeman's (1968) taxonomy.

An ultrasound image of the tongue

Retroflex: r08's 'frog'

Bunched: r08's 'Shriek'

Bunched: r15's 'morph'

Coarticulated bunched: r15's 'torch'

Type 3 only

Type 3 only
Type 4 only

Type 3 only
Type 4 only
Type 7 only

Type 3 only

Type 4 only

Type 7 only

Type 8 only

Type 3 only

Type 4 only

Type 7 only

Type 8 only

Types 4/5/6

Type 3 only
Type 4 only
Type 7 only
Type 8 only
Types 4/5/6
Types 3-7


```
Type 3 only
Type 4 only
Type 7 only
Type 8 only
Types 4/5/6
Types 3-7
3-6 vs. 7-8
Total

7 only

1 only

1 only

1 only

1 only

1 only

27 subjects
```


Average retroflexion rates for prevocalic / J / (11 subjects)

Generalizations: prevocalic /a/

Retroflexion rates:

► (C)ra, (C)ro > (C)ri

Generalizations: prevocalic / ɹ/

Retroflexion rates:

- ► (C)ra, (C)ro > (C)ri
- #rV, prV, frV > krV, ſrV, trV, θrV

Generalizations: prevocalic / ɹ/

Retroflexion rates:

- ► (C)ra, (C)ro > (C)ri
- #rV, prV, frV >
 krV, ∫rV, trV, θrV
- ightharpoonup (ri, tri, θ ri = zero

Generalizations: prevocalic / ɹ/

Retroflexion rates:

- ► (C)ra, (C)ro > (C)ri
- #rV, prV, frV >
 krV, ∫rV, trV, θrV
- ightharpoonup (ri, tri, θ ri = zero

Discourage retroflexion:

- high front vowel
- lingual consonants, especially coronals

Average retroflexion rates for postvocalic $/ \iota / (11 \text{ subjects})$

Generalizations: postvocalic /ɹ/

Retroflexion rates:

▶ low overall

Generalizations: postvocalic / ɹ/

Retroflexion rates:

- low overall
- highest Vrl

Generalizations: postvocalic /a/

Retroflexion rates:

- low overall
- highest Vrl
- ar(C), or(C) > ir(C)

Average retroflexion rates for syllabic $/a/\sqrt{(11 \text{ subjects})}$

Generalizations: syllabic /a/

Retroflexion rates:

low overall

Generalizations: syllabic /a/

Retroflexion rates:

- low overall
- ▶ highest (C)rl

Generalizations: syllabic /a/

Retroflexion rates:

- ▶ low overall
- ▶ highest (C)rl
- ▶ higher prV, frV

▶ Average retroflexion rates are highest before vowels and /I/.

- Average retroflexion rates are highest before vowels and /I/.
- Average retroflexion rates next to different segments are phonetically sensible:

- Average retroflexion rates are highest before vowels and /I/.
- Average retroflexion rates next to different segments are phonetically sensible:
 - ► Less retroflexion next to segments that place demands on the tongue that are antagonistic with retroflexion

- Average retroflexion rates are highest before vowels and /I/.
- Average retroflexion rates next to different segments are phonetically sensible:
 - Less retroflexion next to segments that place demands on the tongue that are antagonistic with retroflexion
 - More retroflexion where segments do not interfere or where tongue body position is compatible with retroflexion

Categorical retroflexion

Nine speakers have some environments with 100% retroflexion.

Categorical retroflexion

- Nine speakers have some environments with 100% retroflexion.
- r19 retroflexes everywhere but fri, tri, θri

Categorical retroflexion

- Nine speakers have some environments with 100% retroflexion.
- r19 retroflexes everywhere but fri, tri, θri
- often bunches ∫ro, tro, θro

Some speakers have systematic gaps.

- Some speakers have systematic gaps.
- r08 doesn't retroflex in frV

- Some speakers have systematic gaps.
- r08 doesn't retroflex in ∫rV
- almost never retroflexes in Cri

Other speakers have other gaps.

- Other speakers have other gaps.
- r17 doesn't retroflex in krV or θrV

- Other speakers have other gaps.
- r17 doesn't retroflex in krV or θrV
- but does retroflex in frV

Sporadic retroflexion

 Three speakers have only sporadic retroflexion.

Sporadic retroflexion

- Three speakers have only sporadic retroflexion.
- ▶ r01 has some retroflexion in #ra

Sporadic retroflexion

- Three speakers have only sporadic retroflexion.
- r01 has some retroflexion in #ra
- and occasional retroflexion in #ro, fra, fro

Retroflexion before liquids

 Only eight subjects retroflex postvocalic or syllabic /a/.

Retroflexion before liquids

- Only eight subjects retroflex postvocalic or syllabic /a/.
- Four of these retroflex only before /I/

Retroflexion before liquids

- Only eight subjects retroflex postvocalic or syllabic /a/.
- Four of these retroflex only before /I/
- ▶ r19 retroflexes in all pre-liquid contexts.

Retroflexion before other consonants

 Only four subjects regularly retroflex before any other consonants.

Retroflexion before other consonants

- Only four subjects regularly retroflex before any other consonants.
- r22 retroflexes in most nonprevocalic contexts.

Retroflexion before other consonants

- Only four subjects regularly retroflex before any other consonants.
- r22 retroflexes in most nonprevocalic contexts.
- but never in krk, ∫rk, trk, or ∫rt

/ı/ allophony rules are...

- phonetically natural
- speaker-specific
- complex

/a/ allophony rules are **phonetically natural**

Bunched /a/ typically occurs next to "bunched" consonants and vowels.

/a/ allophony rules are **phonetically natural**

- ▶ Bunched /ɹ/ typically occurs next to "bunched" consonants and vowels.
- Retroflex /a/ typically occurs in contexts without antagonistic tongue shapes.

More bunching next to linguals and [i]

[ʃ], [k], and [i] all involve essentially a "bunched" tongue body.

More bunching next to linguals and [i]

- [ʃ], [k], and [i] all involve essentially a "bunched" tongue body.
- Retroflexion is rare in these contexts: e.g., r08's "shriek"

More bunching next to linguals and [i]

- [ʃ], [k], and [i] all involve essentially a "bunched" tongue body.
- Retroflexion is rare in these contexts: e.g., r08's "shriek"
- but not impossible: r30's "shriek".

Labials do not interfere with retroflexion or provide free bunching.

- Labials do not interfere with retroflexion or provide free bunching.
- For retroflex /a/, the tongue body is back, as for a back yowel.

- Labials do not interfere with retroflexion or provide free bunching.
- For retroflex /a/, the tongue body is back, as for a back yowel.
- Retroflexion is more common here: r08's "frog".

▶ More retroflexion before /I/ than before any other consonant.

- ▶ More retroflexion before /I/ than before any other consonant.
- The syllable structure of words with Vrl is ambiguous (e.g., 'Carl', 'curl', 'whorl').

- ▶ More retroflexion before /I/ than before any other consonant.
- ► The syllable structure of words with Vrl is ambiguous (e.g., 'Carl', 'curl', 'whorl').
- ▶ Mixed results: 8 of 13 subjects who retroflex before vowels also retroflex before /I/.

- ▶ More retroflexion before /I/ than before any other consonant.
- ► The syllable structure of words with Vrl is ambiguous (e.g., 'Carl', 'curl', 'whorl').
- ▶ Mixed results: 8 of 13 subjects who retroflex before vowels also retroflex before /I/.
- Consistent with other findings relating /I/'s phonetic ambiguity to mixed phonological behavior (e.g. Mielke 2005).

/a/ allophony rules are speaker-specific:

▶ Different reactions to the same phonetic motivations

/a/ allophony rules are **speaker-specific:**

- ▶ Different reactions to the same phonetic motivations
- Responses to different speaker-specific phonetic motivations

Different reactions to the same motivations

Context	Avg.	ii	i	i	i	i	##	i	ii	##	*****
	rate										*****
C{a o}											
# p f	.38	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
velar	.29	Х	Χ	Χ	Χ	Χ	Χ	Χ			
coronals	.26	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
nonpreV											
l	.25	Х	Χ	Χ	Χ	Χ	Х				
elsewhere	.11	Х	Χ	Χ		Χ					
Ci											
# p f	.16	Х	Χ		Χ	Х					
velar	.15	Х	Χ		Χ						
coronals	.07	Χ									

Different conditioning consonants

Subjects differ in what lingual Cs condition retroflexion.

Different conditioning consonants

Subjects differ in what lingual Cs condition retroflexion.

Some differences may be attributed to speaker-specific articulatory motivations.

Different conditioning consonants

Subjects differ in what lingual Cs condition retroflexion.

- Some differences may be attributed to speaker-specific articulatory motivations.
- Some differences are not obviously rooted in different articulatory motivations.

Different conditioning consonants. Why?

r08 retroflexes after /k/ and $/\theta/$, but not after $/\int/$.

r08

Different conditioning consonants. Why?

r08 retroflexes after /k/ and $/\theta/$, but not after $/\int/$.

r17 retroflexes after $/\int/$, but not after /k/ or $/\theta/$.

r08

r17

Speaker-specific motivations: [ʃ]

```
'Shrop'
r08 (bunched): r17 (retroflex):
```

Speaker-specific motivations?: [k]

```
'Crop' r08 (retroflex): r17 (bunched):
```

Speaker-specific motivations?: $[\theta]$

```
'throb' r08 (retroflex): r17 (bunched):
```

/a/ allophony rules are **complex**

▶ Different conditioning segments for different syllable positions

/a/ allophony rules are **complex**

- ▶ Different conditioning segments for different syllable positions
- ▶ Different conditioning consonants for different vowel contexts

/a/ allophony rules are **complex**

- ▶ Different conditioning segments for different syllable positions
- ▶ Different conditioning consonants for different vowel contexts
- Sets of conditioning environments are not easily defined. e.g. r04 has:

/J/
$$\rightarrow$$
 retroflex / {# p f k}__{a o} \vee p__i \vee 0__a

Retroflexion before and after consonants

Consonants that allow retroflexion of a following / a / a.

r19	r22	r27	r04	r26	r08	r32	r17	r01	r10	r06
#	#	#	#	#	#	#	#	#	#	#
р	p	p	p	p	p	p	p		p	p
f	f	f	f	f	f	f	f	f		f
k	k	k	k	k	k	k				
ſ	ſ	ſ	ſ	ſ			ſ			
t	t	t	t	t	t	t	t		t	
θ	θ	θ	θ	θ	θ	θ				

Retroflexion before and after consonants

Consonants that allow retroflexion of a following / J / .Consonants that allow retroflexion of a preceding / J / .

r19	r22	r27	r04	r26	r08	r32	r17	r01	r10	r06
#	#	#	#	#	#	#	#	#	#	#
р	p	p	p	p	p	p	p		p	р
f	f	f	f	f	f	f	f	f		f
k	k	k	k	k	k	k				
ſ	ſ	ſ	ſ	_			ſ			
t	t	t	t	t	t	t	t		t	
θ	θ	θ	θ	θ	θ	θ				

Retroflexion before /a o/ and /i/

Consonants that allow retroflexion of a following / a / before / a o /.

r19	r22	r27	r04	r26	r08	r32	r17	r01	r10	r06
#	#	#	#	#	#	#	#	#	#	#
р	p	p	p	p	p	p	p		p	р
f	f	f	f	f	f	f	f	f		f
k	k	k	k	k	k	k				
ſ	ſ	ſ	ſ	ſ			ſ			
t	t	t	t	t	t	t	t		t	
θ	θ	θ	θ	θ	θ	θ				

Retroflexion before /a o/ and /i/

Consonants that allow retroflexion of a following $/ \iota /$ before / a o/. Consonants that allow retroflexion of a following $/ \iota /$ before / i /.

r19	r22	r27	r04	r26	r08	r32	r17	r01	r10	r06
#	#	#	#	#	#	#	#	#	#	#
р	p	p	p	p	р	p	p		р	р
f	f	f	f	f	f	f	f	f		f
k	k	k	k	k	k	k				
ſ	ſ	ſ	ſ	ſ			ſ			
t	t	t	t	t	t	t	t		t	
θ	θ	θ	θ	θ	θ	θ				

Phonetic naturalness Speaker-specificity Complexity General

These are different from typical sound patterns.

These are different from typical sound patterns.

We do not typically see:

such a wide range of speaker-specific interpretations of a phonetically-motivated sound pattern.

These are different from typical sound patterns.

We do not typically see:

- such a wide range of speaker-specific interpretations of a phonetically-motivated sound pattern.
- such complex conditioning environments.

These are different from typical sound patterns.

We do not typically see:

- such a wide range of speaker-specific interpretations of a phonetically-motivated sound pattern.
- such complex conditioning environments.
- sound patterns that respect each speaker's idiosyncratic articulatory needs.

But apparently these types of patterns are possible.

Why is /a/ allophony different?

▶ The difference between allophones is inaudible.

Why is /a/ allophony different?

- ▶ The difference between allophones is inaudible.
- Speakers cannot converge on a common rule because no one knows what anyone else is doing.

Why is /a/ allophony different?

- ▶ The difference between allophones is inaudible.
- Speakers cannot converge on a common rule because no one knows what anyone else is doing.
- Social convergence has been linked to the simplification of sound patterns (e.g., Trudgill 2002)

Why is / x / allophony different?

- ▶ The difference between allophones is inaudible.
- Speakers cannot converge on a common rule because no one knows what anyone else is doing.
- Social convergence has been linked to the simplification of sound patterns (e.g., Trudgill 2002)
- ► Social convergence on an /ɹ/ allophony pattern might:
 - ▶ iron out speaker-specific articulatory differences,
 - tend to favor an easily learned variant.

Possible "ironed out" conventionalized /a/ allophony patterns:

 \blacktriangleright / \jmath / is retroflex in onsets (like English /I/).

- \blacktriangleright /J / is retroflex in onsets (like English /I /).
- ► / x/ is retroflex next to labials and word boundaries.

- \blacktriangleright / \jmath / is retroflex in onsets (like English /I/).
- /a/ is retroflex next to labials and word boundaries.
- /a/ is retroflex next to back vowels.

- \blacktriangleright / \jmath / is retroflex in onsets (like English /I/).
- /a/ is retroflex next to labials and word boundaries.
- ► /ı/ is retroflex next to back vowels.
- ▶ /ɹ/ is retroflex between labials and back vowels.

- \blacktriangleright / \jmath / is retroflex in onsets (like English /I/).
- /a/ is retroflex next to labials and word boundaries.
- ► /ı/ is retroflex next to back vowels.
- /a/ is retroflex between labials and back vowels.
- / J/ is retroflex in onsets between labials and back vowels.

In the absence of social convergence...

► Each speaker must create a new idiosyncratic sound pattern.

In the absence of social convergence...

- ▶ Each speaker must create a new idiosyncratic sound pattern.
- ▶ These patterns resemble each other to the extent that:
 - variants are easily produced with a human vocal tract
 - they have the same acoustic result (e.g. low F3)

In the absence of social convergence...

- ► Each speaker must create a new idiosyncratic sound pattern.
- ▶ These patterns resemble each other to the extent that:
 - variants are easily produced with a human vocal tract
 - they have the same acoustic result (e.g. low F3)
- ▶ Idiosyncratic sound patterns: the pool of variation from which new conventional patterns could be drawn

Many possible / J / allophony patterns.

Biased toward phonetically natural ones.

Only the acoustic properties (low F3) can gain social significance.

Perceptually, there is no evidence of articulatory differences.

Articulatorily, /a/ allophony is stuck at an early stage.

▶ /ɹ/ allophony is stuck at an early stage of its development

- ► / \(\pi \) allophony is stuck at an early stage of its development
- ▶ No convergence on a common pattern

- ▶ / J / allophony is stuck at an early stage of its development
- ▶ No convergence on a common pattern
- No simplification

- /a/ allophony is stuck at an early stage of its development
- ▶ No convergence on a common pattern
- No simplification
- Variants of the pattern still tend to be phonetically natural.

▶ Different sound patterns can emerge in response to the same phonetic motivation (depending on which variant is ultimately conventionalized).

- Different sound patterns can emerge in response to the same phonetic motivation (depending on which variant is ultimately conventionalized).
- Different speakers can have different phonetic motivations.

- ▶ Different sound patterns can emerge in response to the same phonetic motivation (depending on which variant is ultimately conventionalized).
- ▶ Different speakers can have different phonetic motivations.
- Sound patterns can be both phonetically natural and complex.

- Different sound patterns can emerge in response to the same phonetic motivation (depending on which variant is ultimately conventionalized).
- ▶ Different speakers can have different phonetic motivations.
- Sound patterns can be both phonetically natural and complex.
- Phonetic naturalness and simplicity can be byproducts of the development of a sound pattern.

- Different sound patterns can emerge in response to the same phonetic motivation (depending on which variant is ultimately conventionalized).
- ▶ Different speakers can have different phonetic motivations.
- ▶ Sound patterns can be both phonetically natural and complex.
- Phonetic naturalness and simplicity can be byproducts of the development of a sound pattern.
- ► They need not emerge together.

Thank you