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ABSTRACT

All languages make systematic use of individually meaningless, contrastive categories in

combination to create distinct words. Despite the central role that phonemic category contrasts

play in the transmission of information, they can be lost through language change. The nearly

century-old functional load hypothesis proposes that phoneme contrast loss is less likely the

greater the ‘work’ that a contrast does in distinguishing words. In Wedel, Kaplan, & Jackson,

under review, we showed that simple measures of functional load do significantly predict patterns

of phoneme merger, and that this effect is in the hypothesized direction: the greater the number

of minimal word pairs that a phoneme contrast distinguishes, the less likely is merger. Here, we

extend that analysis to two additional lexical properties predicted to influence the uncertainty

associated with minimal pairs. We present evidence that within our dataset, the number of

minimal lemma pairs sharing syntactic category better predicts merger than those with divergent

syntactic categories, and that the number of minimal lemma pairs with similar frequencies better

predicts merger than those with divergent frequencies. These findings support the general

variationist/usage-based/evolutionary research program, which assumes a causal chain linking

properties of individual utterances to long-term change in the abstract, sublexical category system

of a speech community.
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Functional load and the lexicon: Evidence that syntactic category

and frequency relationships in minimal lemma pairs predict the loss

of phoneme contrasts in language change

INTRODUCTION

Much theoretical work in linguistics over the last 50 years has held that the important factors

accounting for sound patterns in language must be highly general and abstract (cf. the

competence/performance distinction, Chomsky, 1965). Consistent with this hypothesis, many

details of the pronunciation of a given phoneme token are in fact significantly predicted by its

abstract phonological context, rather than by the specific word it occurs in. For example, for any

word in American English, a /t/ is virtually certain to be pronounced as a flap if it occurs

between two vowels, where the second vowel is unstressed. Standard phonological theories (e.g.,

Chomsky & Halle, 1968, Kenstowicz, 1994, Prince & Smolensky, 2004[1993]) assert that these

abstract properties shared across words are the sole level that is relevant for understanding the

larger phonological system of a language.

This approach has been very fruitful in describing categorical, synchronic phonological

patterns within languages, but has been arguably less so in accounting for how those patterns

arise and change over time e.g., (Blevins, 2004a). Further, a great deal of recent work has

established that much of the variation that does exist in the pronunciation of a given phoneme is

in fact predicted by a wide variety of more local, less abstract factors such as word identity

(Pierrehumbert, 2002), near lexical neighbors (Wright, 2004; Munson & Solomon, 2004; Munson,

2007; Baese & Goldrick, 2009; Scarborough, 2010), and information content relative to context

(Jurafsky, Bell, Gregory, & Raymond, 2001; Son & Pols, 2003; Aylett & Turk, 2004; Raymond,

Dautricourt, & Hume, 2006; Kaiser, Li, & Holsinger, 2011 and many others). As a result, a
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number of newer models have been developed over the last two decades that integrate various of

these disparate sources of variation into accounts of the development of phonological patterns over

time. These models, which we will refer to with the umbrella term

’variationist/usage-based/evolutionary’, or VUE, differ from earlier theoretical approaches in their

explicit integration of an arbitrarily large set of possible influences on pattern formation in

language, including possibly ‘universal’ linguistic biases, domain-general cognitive biases as well as

more idiosyncratic influences that may derive from particular structures in a language, or the

culture and history of a speech community. Beyond their ability to account for a wider range of

synchronic behavioral data, these models draw on a wide range of findings in fields such as

evolutionary theory, cognitive science, historical linguistics and phonetics to provide new

hypotheses about how variation at multiple levels and time-scales can drive the development,

propagation and consolidation of phonological patterns over time (For reviews of the rationales

behind this general approach, see e.g., Labov, 1994; Elman, 1995; Pierrehumbert, 2002; Blevins,

2004a; Brighton, Kirby, & Smith, 2005; Christiansen & Chater, 2008; Beckner et al., 2009; Jaeger

& Tily, 2011; for examples of models, see Hare & Elman, 1995; Bybee, 2001; Blevins, 2004a;

Wedel, 2006, 2007; Blevins & Wedel, 2009; Walsh, Möbius, Wade, & Schütze, 2010; Wedel, in

press.)

The Functional Load Hypothesis

The sound-systems of languages are constantly in flux, and over the course of time a phoneme can

occasionally be lost from a language either by merging with a nearby phoneme or by eroding away

in some context. As an example of phoneme merger, the historically contrastive vowels in the

words caught and cot have merged for most English speakers in Canada and in the western part

of the United States, with the result that these words are homophonous for these speakers.

Phonemes can also be lost in specific phonological contexts, rather than lost from the entire

language. An example of a context-specific phoneme loss is the case of [h] deletion before the high
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front glide [j] in some east coast dialects of American English, such that the word human is

pronounced [jum@n] rather than [hjum@n].

For nearly a century, a language researchers have explored the intuitively attractive idea

that a phoneme contrast might be less likely to be lost from a language if it does more ‘work’ in

distinguishing words in communication (Gilliéron, 1918; Trubetzkoy, 1939; Martinet, 1952;

Hockett, 1967; Surendran & Niyogi, 2006; Blevins & Wedel, 2009; Silverman, 2010; Kaplan, 2011;

Wedel et al., under review). The notion of ‘work’ in this sense has been operationalized and

investigated in a number of ways, but until recently, clear evidence in favor of this functional load

hypothesis has been elusive. In Wedel et al. (under review), we provided the first statistical

evidence in support of the functional load hypothesis by showing that within a database drawn

from 8 languages, phoneme contrasts that distinguish more minimal pairs were significantly less

likely to have merged over the course of time. Furthermore, for those phoneme contrasts that

distinguish few or no minimal pairs, we found that phoneme frequency was positively correlated

with merger probability. As described below, these two findings are consistent with VUE models

of language change.

In this paper, we present new evidence consistent with the functional load hypothesis that

sound change is biased toward selective maintenance of those phonemes that specifically

contribute to reducing uncertainty between competing lexical items in discourse (Blevins &

Wedel, 2009; Wedel, in press). This finding represents a challenge to the classic model of

phonology, in which particularities of existing words and their usage patterns can have no

systematic influence on phoneme pronunciation. As a result, classic models cannot easily link

sound change to contrast among actual lexical items; indeed, generative phonological formalisms

are explicitly designed to exclude actual words from consideration (Padgett, 2003; see discussion

section below). In contrast, VUE models provide the mechanistic tools for such a link as well as

corresponding testable hypotheses (Wedel, in press).
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Model Predictions

The VUE family of models has a long history reaching back to the 19th-century work of

(Courtenay, 1895). Modern VUE models draw on findings showing that mental categories

maintain some record of experienced variation, rather than consisting solely of abstract

generalizations (reviewed in the context of language in Johnson, 1997; Bybee, 2002;

Pierrehumbert, 2002; Baayen, 2007; Pisoni & Levi, 2007; Ernestus, 2011). Further, experiencing

category token variants has been shown to influence subsequent production (Goldinger, 2000; see

also Pardo, 2006 and Nielsen, 2007 and perception (Dennis Norris, 2003; Eisner & McQueen,

2005; Kraljic & Samuel, 2005a, 2005b) of tokens of the same and similar categories (reviewed in

Pierrehumbert, 2002, 2003; Wedel, in press). This body of findings suggests that a speaker’s

lexical category system can be understood as a steadily-updating multi-dimensional network, in

which experienced phonetic detail can be represented at multiple levels of analysis and where

generalizations can emerge from and coexist with that that detail (see, e.g., Elman, 1995; Bybee

& McClelland, 2005; Beckner et al., 2009; Walsh et al., 2010; Wedel, in press). This conception of

the lexicon as a densely interconnected network of representations of different granularities

provides a pathway by which variants can spread from word to word e.g., (Wang, 1969; Bybee,

2002; Phillips, 2006) and from sound to sound (e.g., Kraljic & Samuel, 2005a; Mielke, 2008) over

lifetimes and generations within a speech community (Wedel, in press).

Within this general type of model, any consistent biases on variation in production or

perception can feed into this network to promote systematic change in a language system over

time. Researchers using VUE models tend not to place a priori limits on what the sources of

linguistic variation may be, and argue that many crosslinguistically common patterns arise

because of common biases in articulation, perception and cognition shared among humans

(Blevins, 2004a, see also Christiansen & Chater, 2008). At the same time, language-specific biases

that arise, for example, from idiosyncratic structural features of a language, sociolinguistic

processes, or language contact are also predicted to play roles in shaping particular pathways of
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language change. As a result, VUE models predict that a fuller account of the origin of

phonological patterns in language will require reference to at least some of the particular

properties and contexts of individual languages (see Labov, 1994, 2001; Blevins, 2004a for

arguments in favor of this position, and Blevins, 2004b; Chitoran & Hualde, 2007; Blevins, 2009

for some particular examples.).

VUE models contribute testable hypotheses about the relationship between the role of

phoneme contrast in information transmission and the probability of phoneme contrast loss. More

specifically, (Wedel, 2004, 2006, in press) describes and simulates a multi-level exemplar model

(Walsh et al., 2010) for a general linking mechanism between biased variation in word

production/perception events and long-term change in phonetic distributions within sound

categories. This Network-Feedback model argues that given evidence for the storage of

experienced detail on the one hand and production/perception feedback on the other, any

mechanism in production or perception favoring phonetically more contrastive tokens of minimal

pair members will promote maintenance of a phonetic distinction between the phonemes defining

that minimal pair across the lexicon. This model is based in part on the many studies that have

reported that in production, phonetic cues to word identity are enhanced when a word has more

near neighbors, that is, when there are more words in the lexicon that are pronounced similarly

(Aylett & Turk, 2004; Wright, 2004; Munson & Solomon, 2004; Munson, 2007; Baese & Goldrick,

2009; Scarborough, 2010). Interestingly, Baese and Goldrick (2009) report that a phoneme

contrast distinguishing a minimal pair is relatively hyperarticulated in productions of one member

of the pair even when the other is not present in the context. One interpretation of this finding is

that a speaker’s aggregate experience of lexical uncertainty and associated cue-enhancement in

usage influences the longer term representation of phonetic detail in lexical categories (for

additional arguments in favor of this conclusion, see also (Cohen Priva, 2008)). Additionally, a

wide range of experimental work has shown that cues to word identity tend to be

enhanced/reduced when the word is less/more predictable given the local discourse or sentential
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context, e.g., (Jurafsky et al., 2001; Son & Pols, 2003; Aylett & Turk, 2004; Raymond et al., 2006;

Cohen Priva, 2008; Kaiser et al., 2011) . These findings together suggest that enhancement of

phonetic cues to a word’s identity may be correlated with the actual and expected degree of

uncertainty in categorization for that word in usage.

A consequence of these findings for a the Network-Feedback model is that merger

probability for a given phoneme pair should depend on both how often and to what degree a

phoneme contrast reduces uncertainty associated with a minimal pair. In Wedel et al. (under

review), we identified two factors related to the frequency of lexical uncertainty: the number of

lexical minimal pairs distinguished by the phoneme pair in question, and in the case that there

were few or no minimal pairs, the frequency of the relevant phonemes 1. The minimal pair result

suggests that loss of a phoneme contrast is inhibited in relation to the number of minimal pairs

distinguished by that contrast, or framed in terms of the model, the number of minimal pairs for

which uncertainty is strongly dependent on that phoneme contrast. Here we test two additional

factors that are available to us in our dataset that are predicted to be correlated with the degree

of uncertainty associated with any minimal pair.

• Minimal pairs that share the same syntactic category (e.g., noun-noun, verb-verb) should

be associated with greater uncertainty, and therefore inhibit merger more than minimal pairs with

different categories (e.g., noun-verb). The uncertainty associated with minimal pairs that share

syntactic category should be greater because local morpho-syntactic context will contribute less to

their disambiguation, leaving a correspondingly greater role for phonetic cues.

• Minimal pair members with similar frequencies should inhibit merger more strongly than

than those with divergent frequencies, because ceteris paribus, uncertainty is greater between two

system elements of similar probabilities (Shannon, 1948).

Within our datasets we found that both of these predictions are tentatively confirmed. In

the following sections, we describe the construction of the datasets in more detail, followed by

analysis and discussion.
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CORPUS STUDY

Database

The rate of phoneme merger over the course of language change tends to be low, with the result

that often only a small number of historically recent phoneme mergers are attested in related

variants of any given language. Consequently, in order to obtain enough data for statistical

analysis, we pooled data from multiple languages. The languages represented in the dataset are

English (Received Pronunciation and Standard American), German, Dutch, French, Spanish,

Turkish, Korean, and Hong Kong Cantonese.

The dataset consists of 18 systems of phoneme contrasts from these 8 different languages;

these groups are summarized in Table 1. Each system of phoneme contrasts consists of phonemes

within a single structural class such as ‘vowels’ or ‘consonants’, and the the set of phoneme

contrasts within each group is limited to those differing in only one phonological feature such as

voice or place of articulation. Each system contains at least one phoneme contrast that has

merged in some dialect of the language, as well as all other phonologically similar phoneme

contrasts in that structural class. Each system, then, can be considered as a comparison within a

language of a set of phoneme contrasts that have merged and a set of structurally similar

phoneme contrasts that have not. In total, the dataset contains 56 phoneme contrasts that have

merged, and 524 that have not. Within mergers, 35 are consonant-consonant mergers as opposed

to vowel-vowel mergers, and 30 are conditioned by phonological context, as opposed to

context-free. A context-free merger eliminates a phoneme contrast from a language altogether,

while a context-sensitive one eliminates a contrast only in certain phonological environments. The

North American English cot ∼ caught merger is an example of a context-free merger, while the

pin ∼ pen merger, which occurs in southern dialects of American English, merges [I] ∼ [E] only

before nasals. As a consequence, the words pin and pen are homophonous in these dialects, while

pit and pet are not. In addition to phoneme phoneme category mergers, our dataset contains
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three phoneme deletions which we model as merger with zero.

Word and frequency information for each language is obtained from a

phonemically-transcribed corpus. No grammatical or function words were included. These

corpora are different on a number of dimensions (e.g., size and source genre), as are the languages

they represent (e.g., complexity of phoneme inventory, syllable structure, complexity of

morphology). As described below, we used hierarchical modeling to model the differences between

languages as random effects. The fact that these models represent “partial pooling” of results

across the languages makes our results more generalizable than simple logistic regression (Gelman

& Hill, 2007) and therefore should be fairly robust against the heterogeneous nature of the

languages and corpora

For all the languages in this study except for Korean and Hong Kong Cantonese,

corresponding surface-form and lemmatized versions of each individual corpus were available. For

the analysis comparing the role of word-category in the minimal pair count factor (described

below), we used a dataset which excluded Korean and Hong Kong Cantonese so that every

phoneme contrast in the dataset could be associated with both lemma- and surface form-based

minimal pair counts. A major difference between lemma and surface-form minimal pair counts

lies in the fact that for a lemma-based count, each root participates in at most one minimal pair

with another root, while in the surface-form based count, each word that a root participates in

can contribute an independent minimal pair. As an example using the minimal root pair pit and

pat in English, verbal suffixes create the four minimal word pairs, pit ∼ pat, pits ∼ pats, pitting ∼

patting, and pitted ∼ patted. In the lemma-based count, there would be one minimal pair for this

root pair, while in the surface-form-based count there would be four. Consequently, the resulting

minimal pair count based on surface-forms is a mix in which some roots contribute many minimal

pairs to the count and others only one.

The Korean corpus was available in a lemmatized form, and although the Hong Kong

Cantonese corpus is technically a surface-form corpus, we treated it as a lemmatized corpus
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because of the isolating morphology of the language. For the subsequent analysis investigating the

role of minimal pair member frequency relationships, we used only lemma-based minimal pair

counts allowing us to include the data from Korean and Hong Kong Cantonese.

Analysis

In order to address the question of which formulations of functional load are most appropriate, we

will use the framework of logistic regression, by fitting models to predict cases of phoneme merger.

More specifically, because the data is structured hierarchically, we will use hierarchical generalized

linear models (also known as logistic mixed-effects models), fitted using the “lme4” package for the

R statistical software (Bates et al citation, R Core Working Group citation). This approach

should provide more robust generalization across languages, avoiding both the overfitting that

would result from regular logistic regression and the loss of power if models were fit separately for

each language in our database. In the models that follow, phoneme system is used as the grouping

variable (or random effects variable). This means that each system (e.g., American English

consonant-consonant mergers, American English vowel-vowel mergers before nasals, tone mergers

in Hong Kong Cantonese) is modeled with a random intercept, allowing the models to account for

the fact that mergers happen to be more common in some systems. Random slopes – which allow

the effects of our variables of interest to also vary randomly by system – were also fit, but these

models were generally not better-fitting than the simpler models, and did not provide any

different conclusions. We make note of any exceptions to this in the text.

Within this regression-based framework, we are faced with the challenge of comparing the

predictive utility of highly-correlated variables. The distribution of phonemes across the lexicon is

largely, though not entirely random (Tamariz, 2008), and as a consequence, most measures

relating phonemes to words will correlate with one another. Therefore, teasing apart which more

0The CMU pronouncing dictionary lacks frequency information. Frequencies for this dataset
were taken from CELEX.
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nuanced formulations of functional load are more effective predictors is a challenging task. We will

pursue two types of analysis, and if they both provide corroborating evidence, we will take that as

initial support for choosing one predictor over another, even if the predictors are highly correlated.

The two analytic techniques are (1) model comparison using model fit statistics and likelihood

ratio tests of nested models, and (2) comparisons of residualized versions of the predictors.

In the first step, models with the competing predictors are fit, and the model fit statistics of

AIC and BIC are compared. This allows us to make an initial, tentative claim on which predictor

is superior. Then both competing models are compared with a “superset” model that contains

both competing predictors, using a likelihood ratio test. If these tests show that the superset

model is significantly better than the model with the worse predictor, but not significantly better

than the model with the better predictor, this is taken as further evidence that the ‘better’

predictor really is better.

In order to complement this analysis, we also residualize both of the competing predictors

in turn, using a simple linear model. Then we fit two models, one with the ‘real’ predictor A and

the residualized predictor B, and one with the real predictor B and the residualized predictor A.

The first model allows us to see whether the variance in B not predicted by A adds any significant

prediction above and beyond A, and the second model allows us to investigate the converse. If the

model comparison step above selected predictor A, and we found evidence that the residualized

predictor A added prediction above predictor B, but the residualized B did not add above

predictor A, then we would have further evidence that predictor A is superior to predictor B.

These two complementary techniques are used in the following section to test the

relationship of phoneme merger probability to lexical factors that are predicted to influence

uncertainty between minimal pair members.
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RESULTS

Role of Roots and Their Syntactic Category in Merger Probability

Wedel et al., under review, report that the more minimal pairs distinguished by a phoneme

contrast, the less likely that contrast is to merge. We first address the issue of whether

within-category (e.g., noun ∼ noun) minimal pairs are more important for driving the effect than

between-category (e.g., noun ∼ verb) minimal pairs. We will simultaneously address a second

question, whether minimal pair counts should be computed using lemma-based counts, or

surface-form based counts. Both lemmas and surface-forms are a priori plausible influences on

merger probability. On the one hand, surface-forms more closely represent the tokens that are

actually encountered in speech, and thus could better reflect the potential ambiguities that

speakers may encounter. Silverman (2010) argues on this basis that surface-forms, and not

lemmas, should be used in evaluating the functional load hypothesis. On the other hand, we are

unaware of any research that directly addresses how relationships among affixal morphemes

influence the cue enhancement effects reviewed in the introduction above, but to the extent that

they does not, counting minimal pairs by surface-form rather than lemma introduces potentially

extraneous information reflecting morphological paradigm structure in the lexicon, rather than

just content-morpheme relationships. Our results show that compared to the alternatives, the

count of within-category, lemma-based minimal pairs is the most effective as a predictor of merger.

We start by taking the subset of data for which we have both lemma-based and

surface-form counts of minimal pairs (all languages but Korean and Hong Kong Cantonese; see

the ’Database’ section above). This comprises a total of 35 mergers across 482 phoneme contrasts

in 7 corpora. We then calculate within- and between-category minimal pair counts, for both

lemmas and surface-forms, and we re-arrange the data so that ‘lemma-based’ is treated as

nominal ‘predictor’, distinguishing the two types of counts for each of the phoneme pairs. We can

then fit the overall model from Wedel et al., under review, which includes segment token
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frequency and its interaction with the presence/absence of (any) minimal pairs, in addition to the

measures of functional load under investigation here. We fit this full model, because ultimately we

are interested in the best predictors within the context of this overall model. To start, we fit a

model that includes both within- and between-category minimal pair counts, and we model the

interaction of these variables with our dummy ‘lemma-based’ variable.2 This complex model

provides the following insight: for surface-based counts, between-category minimal pairs are a

significant predictor (β = -2.22, z = -3.31, p = 0.001), but within-category are not (β = 0.21, z =

0.59, p = 0.555), but both of these interact significantly with the lemma-based dummy predictor

(β = 3.51, z = 2.01, p = 0.044 and β = -9.05, z = -2.7, p = 0.007, respectively), which indicates

that this pattern is reversed for lemma-based counts.

In order to see this cross-over more clearly, we fit separate models for lemma-based counts

and for surface-based counts. The lemma-based model shows that within-category minimal pairs

is a significant predictor (β = -3.38, z = -2.4, p = 0.016), while between-category minimal pairs is

not (β = 0.92, z = 0.88, p = 0.38). Conversely, the model using surface-based counts shows that

within-category pairs is not significant as a predictor (β = 0.29, z = 0.6, p = 0.551), but

between-category pairs is (β = -2.67, z = -3.06, p = 0.002). In order to choose from these two

possibilities, we provide both empirical and theoretical arguments in favor of the within-category

lemma-based counts.

The empirical argument is provided by model comparison and residualization techniques.

At the simplest level, a model including within-category lemma-based counts as the measure of

functional load has better fit statistics than a model using between-category surface-form counts

(AIC = 235.22 vs. 239.4, BIC = 260.29 vs. 264.47). When these models are compared to a

superset model with both factors using likelihood ratio tests, the superset model is not

significantly better than the model employing within-category lemma-based counts (χ2 = 0.15,

df = 1, p = 0.699), but it is significantly better than the model using between-category

surface-form counts (χ2 = 4.33, df = 1, p = 0.037). Finally, residualization of the two measures
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shows that a residualized within-category lemma-based counts still predicts merger significantly

above and beyond the information provided by between-category surface-form counts (β = -1.08,

z = -2.03, p = 0.043), but that a residualized between-category surface-form counts does not add

prediction above the information provided by within-category lemma-based counts (β = -0.16,

z = -0.33, p = 0.74). In summary, both the model comparison and residualization techniques

indicate that within-category lemma-based minimal pair counts is a more effective predictor of

phoneme merger than between-category surface-form counts. It is furthermore important to note

that the between-category surface-form measure is actually more correlated with within-category

lemma-based counts than it is with the within-category surface-based counts is (0.86 vs. 0.79).

We therefore assume that the apparent effectiveness of between-category surface-form counts, in

particular why it appears to be better than within-category surface-form counts, is that it is

simply more correlated with the overall most effective predictor, within-category lemma-based

counts.

The theoretical argument reduces to an argument of parsimony. From its inception, the

functional load insight has related phoneme-merger probability to the role of phoneme contrast in

supporting transmission of information in usage. The wealth of current data we have reviewed

above supports this view, and is consistent with a model that frames functional load in terms of

reduction of uncertainty at the level of individual utterances. From this standpoint, syntactic

category is clearly predicted to play a role in the relationship of minimal pairs to merger

probability, since local syntactic and/or morphological context should often strongly reduce the

uncertainty between minimal pair members of differing syntactic category. We might imagine

some alternative model for a relationship between minimal pair counts and phoneme merger

probability that is not related to information transmission, but it is not clear why such a model

would predict that between-category minimal pairs should have a greater influence on phoneme

merger probability than within-category minimal pairs. Following these empirical and theoretical

arguments, in the remaining analyses we will concentrate only on lemma-based counts of
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within-category minimal pairs.

Role of Frequency Ratio

A further prediction of a VUE model of sound change is that the relative frequencies of the

members of a minimal pair should influence the average degree of uncertainty between them3.

Specifically, all else being equal, uncertainty is expected to be greater between minimal pairs

members whose frequencies are similar (Shannon 1948). We can conceptualize this influence of

relative frequencies as a weight assigned to each minimal pair corresponding to the modulation of

the expected uncertainty by the difference in frequencies. While there are many ways to

operationalize this prediction, one straightforward way is to use the ratio of frequencies as a

weighting factor in the minimal pair count. To do this, we calculated a simple ratio of the

frequency of the lower frequency minimal pair member divided by the frequency of the higher

frequency member, and summed these footnote/Using this approach, minimal pair members with

similar frequencies will have a ratio near 1, while those with very divergent frequencies will have a

ratio closer to zero. We have also tested the log-transformation of this frequency ratio, as well as

the ratio of the unigram surprisals (i.e., the ratio of the base-2 logarithm of the frequency of the

minimal pair member in the corpus), but these produce essentially the same pattern of results

described in the text.. However, in our data, we observed an extremely high correlation of (r =

0.985, N = 580) between this weighted measure and the simple count of (within-category,

lemma-based) minimal pairs. This high correlation is perhaps unsurprising if the distribution of

minimal lemma pairs result from processes that mimic two random draws from the set of lemmas

with their associated frequencies.

Despite this very high correlation, we investigated whether model comparison could tease

apart the predictive power of the ratio-weighted minimal pair counts described above from simple

minimal pair counts.. The model-fit statistics were extremely close (AIC = 325.07 vs. 323.38, BIC

= 351.25 vs. 349.55), and neither model with each measure as the lone functional load variable
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were significantly different from the superset model including both (simple minimal pair count:

χ2 = 1.7, df = 1, p = 0.193; frequency ratio: χ2 = 0, df = 1, p = 0.961). As a consequence, this

formulation of a predicted frequencies ratio effect does not provide evidence either way.

However, it is also plausible that the relationship between frequency ratio and functional

load of a minimal pair is non-linear. Therefore, we investigated a different formulation, capturing

the notion that minimal pairs with relatively similar frequencies should contribute more to

functional load than those with dissimilar frequencies. For this measure, we calculated a median

minimal-pair frequency ratio independently for each of the 18 phoneme systems in the dataset

and then counted the number of minimal pairs for each phoneme pair whose ratio was above or

below the corresponding median ratio. This provides a simple way to split the minimal pair count

into two bins, one containing minimal pairs with more balanced frequencies (i.e., having a ratio

closer to 1) and the other containing minimal pairs with more divergent frequencies (i.e., having a

ratio closer to zero). As expected, these two measures, which we will call balanced and unbalanced

minimal pair counts, are also highly correlated. Nevertheless, our results provide some evidence

that the balanced minimal pair count is a significantly better predictor of the probability of

merger within our dataset.

As in our analyses so far, the first step is model comparison. The model with the balanced

minimal pair variable has somewhat better fit statistics than the model with the unbalanced

minimal pair variable (AIC = 322.02 vs. 329.27, BIC = 348.19 vs. 355.45). This difference is

confirmed by likelihood ratio tests, which show that the superset model with both predictors

significantly outperforms the model with the unbalanced minimal pair variable (χ2 = 8.46, df = 1,

p = 0.004), but does not significantly outperform the model with the balanced minimal pair

variable (χ2 = 1.21, df = 1, p = 0.272). Finally, the comparison of residualized variables leads to

the same conclusion. When the balanced minimal pair variable is residualized on the unbalanced

minimal pair variable, it still acts as a significant predictor alongside the unbalanced minimal pair

variable (β = -0.89, z = -2.68, p = 0.007), but the same is not true of the unbalanced minimal
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pair variable; when residualized on the balanced minimal pair variable, it no longer adds

prediction above the balanced minimal pair variable (β = 0.31, z = 1.11, p = 0.267). In summary,

both the model-comparison and residualization techniques indicate that there is enough distinct

information in these highly correlated variables to suggest that the count of “balanced” minimal

pairs (i.e., the minimal pairs where the probabilities of the members are relatively close) matters

more to the prediction of merger than the “unbalanced” minimal pairs (i.e., minimal pairs where

the members have very different probabilities).

While these techniques converge on the same conclusion, we should be cautious for two

reasons. First, because the two measures are so highly correlated, their significant difference in

predictive power could be due to a small number of datapoints. Second, this effect is only

obtained when we make a fairly arbitrary decision in how to formulate the measure. This suggests

that if the observed effect is not an artifact of some aspect of our data, there is some kind of

non-linearity in the relationship between frequencies ratio and functional load. This nature of this

possible non-linearity remains to be explored, and raises additional questions which may not be

able to be adequately addressed with the data presented here.

In order to partially address the first concern, we can display the relationship between the

fitted values of the two competing models, to get a sense of how or why the balanced minimal pair

variable is outperforming the unbalanced minimal pair variable. The fitted values are the

estimated probability of merger, as predicted by each of the models. Figure 1 displays the

differences between the fitted values on the y-axis, plotted as a function of the values predicted by

the balanced minimal pair model. Points above the diagonal line indicate that the balanced

minimal pair model predicted greater probability of merger for that phoneme contrast. Mergers

are plotted as large crosses, and non-mergers are plotted as small circles. The models are

performing very similarly overall, which is expected due to the high correlations between the

predictors. However, note that at the upper right of the graph where most points represent

mergers, the balanced model generally makes stronger predictions in favor of merger than the
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unbalanced model. Conversely, in the lower left where most points represent non-mergers, the

balanced model generally makes stronger predictions in favor of non-merger than the unbalanced

model. The generality of this pattern suggests that the better performance of the balanced model

is not due to a handful of extreme points.

This pattern can be seen more easily if these fitted values are plotted in a different way.

Figure 2 plots the differences between the fitted values (which is equivalent to the vertical

distance between points in figure 1 and the slope = 1 line) as a function of the fitted values for

the balanced minimal pair model. That is, the values on the x-axis in figure 2 represent the

probability of merger for each phoneme contrast in the data set, as predicted by the balanced

minimal pair model. Values on the y-axis are the difference in fitted values between the balanced

and unbalanced minimal pair models. Greater vertical distance above the dotted line indicating y

= 0 indicates that the balanced model predicts greater probability of merger than the unbalanced

model, and conversely, greater distance below the dotted line indicate that the balanced model

predicts lower probability of merger than the unbalanced model. To the extent that the

superiority of the balanced model is broadly-based in the data, we expect a consistent divergence

between the two models particularly where the balanced model makes its most extreme

predictions. This appears to be the case: where the balanced model more strongly predicts

non-merger (corresponding to low values along the x-axis), most points represent non-merged

phoneme contrasts, and their position below the dotted-line indicates that the balanced model

predicts non-merger more strongly. Similarly, where the balanced model more strongly predicts

merger, most points do represent mergers and most tend to be above the dotted line, indicating

that for these phoneme contrasts the balanced model predicts merger more strongly than the

unbalanced model. Again, the fact that we see this general trend throughout the data suggests

that the better performance of the balanced model in predicting merger probability in our dataset

is not due to a few isolated cases.

19



We can use these fitted values to find example cases for which the balanced minimal pair

model is doing a better job. The shaded areas in Figure 2 show quandrants where the balanced

minimal pair model is clearly outperforming the alternative, as described above. These regions

cover 5 cases of merger and 8 cases of non-merger, which are given as examples in table 3.

Perhaps the most important thing to note from these examples is that the model is making these

stronger predictions for a range of languages and phoneme classes in the dataset, suggesting that

model performance in this dataset is not based on an artifact of inclusion of a particular language.

Summary of Final Model

We have presented arguments for a more specific formulation of the functional load variable,

namely a lemma-based count minimal pairs, where the minimal pair members are of the same

syntactic category, and have unigram probabilities that are above the median for the phoneme

system. Model comparison and residualization techniques provided statistical evidence that this

formulation is a more effective predictor of merger than other reasonable alternatives. In this

section, we provide a statistical and graphical summary of the full model. Following the initial

results described by Wedel et al., under review, the model consists of a variable representing

functional load, and a variable representing segmental (token) frequency which interacts with a

dichotomized functional load variable.4 In table 4 we give the coefficients for the parameters in

the final model.5 The pattern of effects follows the same pattern as that found in Wedel et al.,

under review. First, where there are any (within-category) minimal pairs, there is a significant

effect of functional load, here specified as the number of within-category minimal pairs that have

relatively balanced probability ratios (i.e., relatively close to 1), compared to the median

frequency ratio value for the phoneme system. This effect is in the expected direction, such that

the greater the functional load, the less likely merger is to occur. Second, for phoneme contrasts

with minimal pairs, the effect of segment frequency is non-significant. Third, for phoneme
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contrasts with no minimal pairs, the effect is significantly more positive, such that greater

segment frequency leads to greater probability of merger.

While this model is simple and provides significant prediction, a great many other factors

contribute to actual patterns of sound change (see e.g. Labov, 1994, 2001; Blevins, 2004a).

Nonetheless it is interesting to ask how well this simple model performs in separating mergers from

non-mergers. This can be displayed graphically by inspecting the distribution of predicted values

(i.e., fitted values) of merger probability separately for actual mergers and non-mergers. These

distributions are shown for our data in the density plots in figure 3. This figure shows that despite

the extreme simplicity of this model, separation is fairly good. Predicted probabilities of merger

somewhere above 0.30 appear to characterize mergers almost exclusively, and the majority of

non-mergers are assigned merger probabilities of 0.10 or lower. The general point here is that for

being so simple, the model is doing rather well given the complexities of historical sound change.

One might also wonder to what extent these results are expected to generalize to languages

not investigated here. It is certainly the case that the language-specific estimates of overall rate of

merger contribute a great deal to the predicted probabilities shown in figure 3. However, because

we have not found any evidence that the fixed-effect coefficients (i.e., the effects in table 4) vary

significantly across phoneme systems, we can have reasonable expectations that the general

pattern of results would generalize, and that probabilities of merger assigned by the model would

be successful in assigning relative merger probabilities to a similar degree as seen in the present

data. However, given that the rate of merger is typically quite low for any given language, we

cannot expect any given language to show statistically significant evidence of a functional load

effect on its own. In fact, we expect that evidence supporting a functional load effect has proven

elusive for many years precisely because sufficient linguistic and computational resources have

been lacking to study this until recently.
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DISCUSSION

Functional Load and Traditional Generative Phonology

We have shown that the likelihood of diachronic merger between two sounds depends on the

amount of ‘work’ that the pair does in distinguishing words in the lexicon. Furthermore, the

evidence indicates that this effect cannot be explained solely as a phoneme-level phenomenon

(driven, for example, only by phoneme frequency): the functional load of a phoneme pair also

depends on the actual words that it distinguishes in the lexicon.

This result stands in striking contrast to the approach of traditional generative phonology,

which makes a sharp distinction between possible words (knowledge of which is part of a speaker’s

phonological grammar) and actual words (which are an accident of the lexicon). Theories that

explicitly aim to handle contrast, such as Dispersion Theory (Flemming, 2002; Campos-Astorkiza,

2007; Nı́ Chiosáin & Padgett, 2009; Padgett, 2009) and various implementations of

underspecification (e.g., Itô & Mester, 1986), Hall, 2011, deal with the level of the segment or, at

most, idealized possible words. Formal devices for maintaining contrast between actual words are

typically limited to morphological paradigms, in the form of constraints such as Anti-Ident

(Crosswhite, 1999), RealizeMorph (Kurisu, 2001), ParadigmContrast (Kenstowicz, 2002;

Itô & Mester, 2004), or PreserveContrast applied to members of a paradigm (Ouwayda, 2010)

This focus on possible as opposed to actual words is a deliberate choice, meant to capture

the fact that speakers do distinguish between nonwords that are phonotactically legal in their

language and those that are not. In addition, giving the phonological grammar unrestricted access

to the lexicon has the potential to predict unattested patterns:

The idea of neutralization avoidance, if understood in the wrong way, can make

strange predictions. For example, consider the fact that Standard English has the

words beat [bit], boot [but], and peat [pit], but no poot [put]. If [i] and [u] are
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unmarked because they make a perceptually good contrast, and [1] is even better in

the absence of such a contrast, then do we expect [pit] to become [p1t] (since there is

no [put] for [pit] to remain distinct from)? Similarly, if there were a process backing [i]

to [u], would we expect that it might affect [pit] but not [bit], since only the latter

would entail a neutralization (with [but])?

These questions arise when we take the domain of explanation to be the set of actual

lexical items in a language. But this is in fact not the practice in generative

phonology. Instead, theories model the set of possible words of a language.... (Padgett,

2003, 78-79)

This generalization appears to be correct: we are aware of only one pattern that has been argued

to involve synchronic homophony avoidance among paradigmatically unrelated forms (Ichimura,

2006); however, as Mondon (2009, 157-9) notes, the evidence presented by Ichimura leaves open

the possibility that the pattern is not productive.

The approach of traditional generative phonology, then, is a reasonable and principled one.

However, in eliminating their ability to describe synchronic homophony avoidance, these theories

also give up any possiblity of describing the diachronic effects of functional load as well. We

emphasize again that it would not be possible to capture these diachronic effects by making a

simple modification to the machinery of a typical generative theory – for example, by ‘decorating’

a language’s phoneme inventory with information about the frequency of each segment. Our

results suggest that the functional load effect depends on specific relationships among actual

lexical items, which is precisely what traditional generative phonology rejects.

One response to this state of affairs is to conclude that functional load effects are located

outside the regular phonological machinery. However, both the control of pronunciation details in

usage and the generation of systematic phoneme-inventory patterns are central phonological

phenomena. Restricting the domain of ‘phonology’ to exclude lexical properties that have been

shown to influence these phenomena would be an unwarranted rejection of potential explanatory
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power. Thus, it is worth exploring VUE models that unite the synchronic variation that is the

traditional purview of phonology with the diachronic effects seen here.

Functional Load and Variationist/Usage-Based/Evolutionary Theories

In stark contrast to classic models, a central feature of VUE models is the assumption of a causal

chain linking properties of individual utterances to long-term change in the abstract, linguistic

category system of a speech community (Ohala, 1989; Labov, 1994; Kirby, 1999; Bybee, 2001;

Pierrehumbert, 2001, 2003; Blevins, 2004a; Wedel, 2007; Christiansen & Chater, 2008; Beckner et

al., 2009; Blevins & Wedel, 2009). This approach predicts that any consistent bias in utterances

that can be perceived and reproduced by language users can in principle influence the trajectory

of language change. The functional load hypothesis represents a potentially fruitful place to look

for evidence for or against such a long-range connection, because it explicitly relates change in a

phonological system to actual usage events of words in a language.

Specifically, the functional load model predicts that the utility of a phoneme contrast in

reducing uncertainty between words in usage influences the likelihood of loss of that phoneme

contrast through language change. Part of the historic difficulty in finding evidence for such a link

lies in the fact that functional load is only one of many influences on sound change, with the

result that statistical techniques need to be applied to a relatively large dataset to find evidence

for it. An additional problem is that many of the possible factors related to a functional load

effect are very tightly correlated with one another, as expected if the distribution of phonemes

across words is largely random. As a consequence, a correspondingly large amount of data is

required to exploit the few deviations that reveal tighter association of a given factor with merger

probability than another. Wedel et al. (under review) showed that a simple count of minimal

pairs distinguished by a phoneme contrast significantly predicted merger of that contrast in some

community speaking that language. Phoneme frequency was also found to be predictive of

merger, but in the opposite direction: higher phoneme frequency is correlated with merger, but
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also correlated with higher minimal pair count. Interestingly in this regard, the influence of

phoneme frequency was only significantly predictive of merger in the absence of minimal pairs.

Nonetheless, because of the strong correlation between minimal pair counts and other non-lexical

factors, we need to be cautious about accepting that features of the lexicon influence sound

change in this way. As a further test of the involvement of the lexicon in the functional load

effect, in the work reported here we investigated two additional, specifically lexical factors that

are predicted to influence lexical uncertainty in usage within minimal pairs: syntactic category,

and relative minimal pair frequency. Our finding that including both factors in the analysis

improves the model is consistent with the hypothesis that actual words matter.

Syntactic-Category as a Factor in Merger Prediction

In Wedel et al. (under review), we showed that for a given phoneme contrast in a language in our

dataset, the number of words distinguished by that contrast inversely correlates with merger

probability in that language. Here, we divided the minimal pair-count factor into two

sub-categories on the basis of whether the minimal pair members were of the same syntactic

category or different syntactic categories. The rationale for this division is that uncertainty for

within-category minimal pair members should be on average greater because local

morpho-syntactic context is less likely to contribute to their disambiguation. In addition, each of

the corpora that underlie the dataset are available in lemmatized and surface-form versions, so we

created corresponding lemma- and surface-form-based counts for within- and between-category

minimal pairs. Consistent with prediction, we found that the lemma-based count of

within-category minimal pairs predicted merger significantly better than any of the other three

minimal pair counts. Residualization of these other three counts against the lemma-based, within-

category count suggests that they derive their predictive power from their correlation with the

lemma-based, within-category count.

Counting minimal pairs is a very coarse technique for estimating the causal factor in the
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functional load effect that is predicted by model, that is, the overall reduction in uncertainty in

language use contributed by a particular phoneme contrast. In this regard, it is interesting that

the within-category lemma-based count is more predictive than the corresponding surface-form

based count. This suggests that for this coarse measure, at least, the additional information about

morphological paradigm structure inherent in the surface-form count is not relevant.

Frequency Ratio as a Factor in Merger Prediction

The relative frequency of within-category, lemma-based minimal pair members was also found to

be a significant predictor of merger, consistent with prediction. To the extent that predictability

of words in context is related to their unigram frequency of occurrence, the uncertainty between

minimal pair members should be on average greater when their unigram frequencies are similar

(Shannon, 1948). If cue-enhancement is related to the degree of uncertainty, minimal pairs for

which the members are more similar in frequency should contribute more to the inhibition of

merger. We found that when the within-category minimal pair count for each phoneme pair was

split by the median low/high frequency ratio for minimal pairs within a phoneme system, the

count of minimal pairs with closer frequencies predicted merger significantly better than the count

of those with more divergent frequencies. Consistent with the notion that this effect derives from

the specific minimal pair member frequencies rather than some correlated, more general feature of

the lexicon, corresponding factors for the between-category minimal pair count did not show a

difference in predictive power. Several exemplar-based models of phonetic category merger also

show more probable and more rapid merger when phonetically adjacent categories are produced

with divergent frequencies (Pierrehumbert, 2001; Wedel, in press)

Finally, we note that we did not find any measure based on absolute word frequency that

was predictive of merger probability within this dataset. There are a number of plausible,

non-exclusive explanations for this. First, the dataset is based on modern corpora which will fail

in any number of ways to accurately reflect the state of the language at the inception and
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progress of the merger. We expect that the frequency relationships within the corpus are likely to

be less reflective of the relevant state of the language than the more categorical measures of word

existence and word-category. Second, unigram frequency itself may simply be a relatively poor

predictor of uncertainty relevant to phonetic cue enhancement processes (see e.g., (Piantadosi,

Tily, & Gibson, 2011)).

Lexical-Level Entropy as a Factor in Merger Prediction

Hockett (1967), followed by Surendran and Niyogi (2003, 2006), note that the change in

lexical-level entropy upon loss of a phoneme contrast represents that contrast’s contribution to

the overall information transmission capacity of a system (Shannon, 1948) and argue that it is

therefore likely to be the best measure of functional load. In Wedel et al. (under review), and here

for datasets based both on lemma and surface-form frequencies, we find that the more local

measures of minimal pair count and relative phoneme frequency do a significantly better job of

predicting merger. As noted above, it is possible that that the frequency information in the

corpora on which the dataset is based may not correspond sufficiently well to the language

context during the merger process to reveal an underlying relationship with lexical-level entropy.

However, we think that the lexical-level entropy contribution of a phoneme pair is unlikely to have

a direct influence on merger probability for the following reasons. If cue enhancement in

phonemes were directly related to lexical-level entropy contribution, we should see equivalent

degrees of enhancement in every instance of each phoneme without regard to its local uncertainty

in context. Instead, as mentioned above, research has established that contextual uncertainty has

a significant influence on pronunciation variation. It is true that evidence also suggests that some

more global degree of expected uncertainty influences pronunciation separately from the

properties of the immediate context (Baese & Goldrick, 2009; Cohen Priva, 2008). However, it is

more parsimonious to explain this broader behavior solely in terms of the observed (e.g., Wang,

1969; Bybee, 2002; Phillips, 2006; Mielke, 2008), and experimentally supported (e.g., Kraljic &
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Samuel, 2005a) ’bottom-up’ generalization of initially context-specific pronunciation variants as

proposed in the Network Feedback model (Wedel, 2004, in press), rather than in addition through

some top-down influence of lexical-level entropy. It is worthwhile noting, however, that bottom-up

generalization of phoneme variants which reduce uncertainty between specific lexical items will

indirectly act to support the lexical-level information-transmission capacity of the system as a

whole.

CONCLUSIONS

In addition to providing statistical evidence for a link between the probability of phoneme

contrast loss and the role of phoneme contrast in information transmission in language use, this

study provides some guidance for future work on the topic. Where previous literature has

operationalized the notion of functional load in a wide variety of ways, our data suggests that

some measures capture the relevant phenomena better than others, in particular that

lemma-based counts are more predictive of merger than surface-form-based counts, and that local

measures such as relative frequency within minimal pairs are more predictive than more global

measures such as system entropy (cf. Surendran & Niyogi, 2003). These findings suggest two clear

avenues for further research: (i) enlarging the database to improve our ability to separate highly

correlated variables, in particular by including more languages with different properties and from

different language families; and (ii) exploring more direct methods to measure the uncertainty

between minimal pair members, for example by comparing the n-gram conditional probabilities of

minimal pair members in speech corpora.

However, despite the simplicity of this model, it may already contribute to our

understanding of certain phonological patterns. As a matter of expositional convenience, up to

this point we have primarily framed the model in terms of predicting the probability of phoneme
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contrast loss, but it can just as well be thought of as making predictions about the probability of

phoneme contrast preservation. As an example, consider the unusually crowded high/mid/front

vowel space of American English, containing the contrastive vowels /i ∼ I∼ E∼ e/. Within a

genetically- and areally-balanced sample of 628 languages (Mielke, 2008), only 6% of the

languages’ vowel inventories include this set of four vowels. As a comparison, 69% of the

languages’ vowel inventories include the more dispersed high/mid set /i ∼ e ∼ u ∼ o/. Given the

relative typological rarity of /i ∼ I∼ E∼ e/ as a set, and the observation that they are more

confusable with each other than with other vowels in the American English system (Hillenbrand,

Getty, Clark, & Wheeler, 1995), we might expect that some of these contrasts would fully merge

in some natively English speaking speech communities. Instead, these vowel contrasts often

chain-shift with respect to each other in ways that preserve their distinctiveness (see Labov, 1994;

Maclagan & Hay, 19 for examples). In 4 we repeat the figure comparing model predictions for

mergers and non-mergers, indicating the model predictions for the context-free mergers of /i ∼ I/,

/I∼ E/ and /E∼ e/ vowel contrasts, with the actually merged /A∼ O/ contrast included for

comparison. We see that the model makes its strongest possible predictions that the phonetically

similar high-mid-front vowel pairs in American English will not merge across-the-board, while

being essentially agnostic about the /A∼ O/ contrast. This supports hypotheses that the failure to

find context-free mergers of these high/mid/front vowel contrasts in dialects of English is related

to their high functional load (e.g., Labov, 1994; Maclagan & Hay, 19). This is consistent with the

Network-Feedback model, which describes a mechanism for a high functional load for a phoneme

contrast to promote chain-shifting or contrast trading over merger; for a detailed description of

this model and illustrative simulations, see Wedel, in press. Finally, in the introduction we noted

that in addition to biases that are likely to be common among all humans, VUE models predict

that idiosyncratic structural properties of languages should also play a significant role in shaping

pathways of language change. The evidence we report here is consistent with this prediction,

suggesting that the particular distribution of phonemes across the actual lexicon of a language
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will contribute significantly to an account of the evolution of its phoneme inventory.
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Crosswhite, K. (1999). Intra-paradigmatic homophony avoidance in two dialects of Slavic. In

M. K. Gordon (Ed.), Papers in phonology 2 (Vol. 1, p. 48-67). Los Angeles: UCLA

Department of Linguistics.

Dennis Norris, A. C., James McQueen. (2003). Perceptual learning in speech. Cognitive

Psychology , 47 , 204-238.

Eisner, F., & McQueen, J. M. (2005). The specificity of perceptual learning in speech processing.

Perception & Psychophysics, 67 , 224-238.

Elman, J. L. (1995). Language as a dynamical system. In R. Port & T. van Gelder (Eds.), Mind

as motion: Dynamical perspectives on behavior and cognition. Cambridge, MA: MIT Press.

32



Ernestus, M. (2011). Categoricality and gradience in phonology theory. In M. van Oostendorp,

C. J. Ewen, E. Hume, & K. Rice (Eds.), The Blackwell companion to phonology. Oxford:

Blackwell.

Fagyal, Z., Kibbee, D., & Jenkins, F. (2006). French: A linguistic introduction. Cambridge:

Cambridge University Press.

Flemming, E. S. (2002). Auditory representations in phonology. New York, NY: Routledge.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.

Cambridge: Cambridge University Press.
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FOOTNOTES

1We hypothesize that in the absence of any functional load effect, the probability of phoneme

contrast merger is a function of the probability that the distributions of two phonemes drift

toward one another sufficiently that they can be reanalyzed as one category by a subsequent

generation. Within some VUE models, more frequent use has been predicted to correlate with

more rapid change because each use provides an opportunity for the production of new variation.

As a result, ‘apparent time’ may run faster for more frequently used sound categories. (See e.g.,

Bybee, 2001 and many others).

2As mentioned above, we fit a variety of random-effects models, including the full random

slopes model. All of these models produced the same pattern of effects reported here, but the

simplest model – the model with only a random intercept effect of phoneme system – was found

to be the best fitting. It is the results from this model that are reported here.

3Because all frequencies reported in the text are normalized by dividing by the

corresponding total corpus frequency, they correspond to unigram probabilities.

4See Wedel et al., under review for a full discussion of this model and the justification of the

dichotomized interaction.

5This model includes a random intercept term for phoneme system, as described below, but

the random intercept values are not given here. More complex random effects did not improve the

fit of the model and also did not change the pattern of results for the fixed effects.
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Language
Phoneme Types Actual

Notes References
/ Context Mergers

English V ∼ V aI ∼ OI price ∼ choice Wells (1982)
(RP) U@ ∼ O: cure ∼ thought

I@ ∼ E@ near ∼ square
E: ∼ E@ nurse ∼ square

C ∼ C T ∼ t
T ∼ f
T ∼ s

English V ∼ V a ∼ O lot ∼ thought Labov et al. (2006)
(American) OI ∼ Eô

V ∼ V / ô a ∼ O start ∼ north
V ∼ V / n I ∼ E pin ∼ pen
V ∼ V / l I ∼ i hill ∼ heel

U ∼ u pull ∼ pool
U ∼ oU bull ∼ bowl
2 ∼ a hull ∼ hall
U ∼ 2 bull ∼ hull

C ∼ C û ∼ w
C ∼ ∅ / j j ∼ ∅ Labov et al. (2006)

German V ∼ V e ∼ E: gebe ∼ gäbe Wiese (2000)

Dutch C ∼ C s ∼ z Kissine et al. (2003)
f ∼ v
x ∼ G

French V ∼ V Ẽ ∼ œ̃ vin ∼ un Fagyal et al. (2006)
e ∼ E épée ∼ épais

œ ∼ ø∼ O
Spanish C ∼ C L ∼ j Penny (2002, 106)

s ∼ T Harris (1969)

Turkish C ∼ ∅ / V V G ∼ ∅ Lewis (1967)

Korean C ∼ C / [–son] p ∼ p’ post-obs. tensing Sohn (1999, 173)
t ∼ t’
s ∼ s’
Ù ∼ Ù’
k ∼ k’

C ∼ C / ]σ p ∼ ph coda neut. Sohn (1999, 165)
t ∼ th ∼ s ∼ s’
∼ Ù ∼ Ùh ∼ h
k ∼ kh ∼ k’

Cantonese C ∼ C / # n ∼ l Zee (1999)
(Hong Kong) C ∼ C / # n ∼ N Zee (1985)

C ∼ ∅ / ]σ N ∼ ∅ Zee (1999)
T ∼ T 2 ∼ 5 Mok & Wong (2010)

Table 1
Phoneme pairs and known actual mergers included in the database.
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Language Corpus surface-forms Available?

English CELEX yes
(RP) (Baayen, Piepenbrock, & Rijn, 1995)

English CMUDict1 yes
(American) (Weide, 1995)

German CELEX yes
(Baayen et al., 1995)

Dutch CELEX yes
(Baayen et al., 1995)

French Lexique yes
(New, Pallier, Ferrand, & Matos, 2001)

Spanish Spanish Gigaword Corpus yes
(Mendonça, Graff, & DiPersio, 2009)

Turkish (Sak, Güngör, & Saraçlar, 2008) yes

Korean Korean National Database no
(Lee, 2006)

Cantonese Hong Kong Cantonese Corpus no
(Hong Kong) (Kang Kwong, 2004)

Table 2
Corpora used to construct the database.

43



Corpus System Pair Merged Balanced Count Unbalanced Count

Fr F VV Ee Merged 9 10
Fr F VV øO Merged 2 6
Ko K 3 CodaNeut Ùt Merged 1 4
Ko K 3 CodaNeut s t Merged 1 2
RP RP CC v Merged 0 1
Am AE VV l e i Unmerged 19 10
Du D CC f x Unmerged 46 25
Du D CC j G Unmerged 21 14
Fr F VV e O Unmerged 35 28
Ko K 5 OnsNeut ÙÙh Unmerged 14 5
RP RP CC b v Unmerged 26 15
RP RP CC f v Unmerged 25 17
RP RP CC h Ù Unmerged 21 15

Table 3
Selected examples predicted especially well by balanced minimal pair model
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parameter Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.20 0.45 -7.17 0.0000
functional load (special min. pair count) -3.11 0.83 -3.74 0.0002
absence of minimal pairs -0.47 0.45 -1.04 0.2965
segment frequency 0.31 0.23 1.34 0.1793
segment freq. x absence of min. pairs 1.21 0.52 2.31 0.0206

Table 4
Fixed-effect parameters for final model
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FIGURE CAPTIONS

Figure 1. Scatterplot of fitted values for different frequency ratio variables

Figure 2. Differences of fitted values between two models

Figure 3. Distribution of predicted probabilities for final model

Figure 4. The position of several American English vowel contrasts within the distribution of

predicted probabilities for final model
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